
1

Fig. 1. The peak-to-peak interval is the total time of shutdown (= 0 if

system has crashed), recovery, and ramp-up.

Fast Peak-to-Peak Restart for SSD Buffer Pool Extension
Jaeyoung Do

#1
, Donghui Zhang

#2, *
, Jignesh M. Patel

#3
, David J. DeWitt

#4

{
#1

jae,
#3

jignesh}@cs.wisc.edu
Computer Sciences Department, University of Wisconsin - Madison

#2
dzhang@paradigm4.com

#4
dewitt@microsoft.com

Paradigm4 Microsoft Jim Gray Systems Lab

Abstract—A promising usage of Flash SSDs in a DBMS is to

use it to extend the main memory buffer pool by caching in the
SSD selected pages that are evicted from the buffer pool. These
schemes have been shown to produce big performance gains in
the steady state. Simple methods for using the SSD buffer pool
throw away the data in the SSD when the system is restarted
(either when recovering from a crash or restarting after a
shutdown), and consequently need a long “ramp-up” period to
regain peak performance. A recent method to address this
limitation is to use a memory-mapped file to store the metadata
(called the SSD buffer table) about the contents of the SSD buffer
pool, and to recover the metadata at the beginning of recovery.
However, this method can result in lower sustained performance,
because every update to the SSD buffer table may incur a
random I/O operation. In this paper we propose two new designs.
One design reconstructs the SSD buffer table using transactional
logs. The other design asynchronously flushes the SSD buffer
table, and upon restart, lazily verifies the integrity of the data
cached in the SSD buffer pool. We have implemented the
previously proposed scheme and these two new schemes in SQL
Server. For each design, both the write-through and the write-
back caching policies were implemented. Using two OLTP
benchmarks (TPC-C and TPC-E), our experimental results show
that our designs produce up to 3.8X speedup on the interval
between peak-to-peak performance, with negligible performance
loss; in contrast, the previous approach has a similar speedup
but up to 54% performance loss.

I. INTRODUCTION

Using a flash SSD to extend the main memory buffer pool is

well established as a way to improve the performance of DBMSs

(e.g., [2], [6], [7], [9], [14]). With an SSD buffer-pool extension,

a DBMS still treats the disks as the permanent “home” of data.

However, when pages are evicted from the buffer pool, selected

pages are cached in the SSD (called the SSD buffer pool).

Subsequent access to such pages can be served by fetching them

from the SSD. Generally, the SSD buffer pool is used to cache

pages that are likely to be accessed in the future with a random

I/O access pattern. Consequently, these methods result in

improved performance when the random I/O speed of the SSD is

(much) faster than the aggregate random I/O speed of the disks.

However, such schemes may have a long “peak-to-peak

interval” when restarting the DBMS from a crash or from a

shutdown. As Fig. 1 illustrates, the peak-to-peak interval has

three components: shutdown, recovery, and ramp-up.

On restart, a simple scheme for SSD buffer-pool extension can

simply throw away all the pages in the SSD buffer pool and

recover the system from the data in the disks (in the normal

fashion). However, in this case the ramp-up time can be very long

(of the order of many hours in our experiments).

Another approach to restarting when using an SSD buffer-pool

extension is to keep, at all times, an accurate catalog/metadata of

the pages that are cached in the SSD buffer pool in some well-

known persistent location. Then, on restart, we can reload the

SSD buffer pool metadata, called the SSD buffer table, and reuse

the pages that were previously cached in the SSD. In fact,

Bhattacharjee et al. [3] recently proposed such a scheme in which

the SSD buffer table is implemented as a memory-mapped file.

The memory-mapped file can be stored in the SSD with the SSD

buffer pool, or it can also be stored on disk, or a dedicated SSD.

This approach, which we call the Memory-Mapped Restart

(MMR) scheme, does in fact reduce the peak-to-peak interval.

However, one drawback of this approach is that it has the

potential to generate a large amount of additional I/O traffic for

every change that is made to the SSD buffer table. Consequently,

in some cases, the overall peak performance with this approach

can be lower compared to the case when the SSD is not used to

speed up the restart process. In other words the actual peak that is

achieved in Fig. 1 can be lower.*

What we need is a fast mechanism to reduce the restart

(shutdown and recovery time in Fig. 1), and the ramp-up time,

without impacting the actual peak performance that can be

achieved when using the SSD buffer-pool extension. In this paper

we propose two such methods, called the Log-based Restart

(LBR) and Lazy-Verification Restart (LVR).

The main idea behind the LBR method is to flush the SSD

buffer table during the checkpoint operation, and to log the

updates made to the SSD buffer table in the regular database

transactional log. Upon restart, the SSD buffer table can be

reconstructed from the log. The major challenge in this design is

to figure out the protocol to checkpoint, log, and recover. On the

other hand, the main idea behind the LVR method is to

* All of the work by this author was done while he was at Microsoft.

2

TABLE I

ACRONYMS COMMONLY USED IN THIS PAPER

Acronym Meaning

DW
The Dual-Write design [7] of SSD buffer-pool

extension, a write-through policy.

LC
The Lazy-Cleaning design [7] of SSD buffer-

pool extension, a write-back policy.

SSDBP
The original SSD buffer-pool extension design

that regards the SSD buffer pool empty at restart.

MMR Memory-Mapped Restart [3] (Section III-B).

LBR Log-based Restart (Section III-C).

LVR Lazy-Verification Restart (Section III-D).

FC
A record in the SSD buffer table. The name

comes from “Flash Cache”.

Fig. 2. After a shutdown with a 20K customer TPC-E database in the

DW design. SSDBP_OLD denotes the SSD buffer-pool extension used in
our previous work [7] (without restarting from the SSD or aggressive fill).

asynchronously flush the SSD buffer table periodically. During a

restart, then, the contents of the SSD buffer table are lazily

verified “on demand.” A key challenge in this design is dealing

with invalid SSD buffer table records that are recovered from the

most recent flush.

Our previous work [7] examined four pure SSD buffer-pool

extension (no restart from the SSD) designs: LC (a write-back

approach), DW (a write-through approach), CW (a simple

approach that only caches clean pages in the SSD), and TAC,

which was proposed by Canim et al. [6]. The findings pointed to

LC being better for OLTP workloads that fit the TPC-C model,

and DW being better for OLTP workloads that fit the TPC-E

workloads. (SSD buffer pool extension also helps warehousing

workloads, and all the schemes have similar performance in that

case; in the interest of space, we only focus on OLTP workloads.)

So for a comprehensive study, we need SSD-restart schemes

that work with both DW and LC. In this paper, we evaluate the

performance for the three SSD recovery designs (MMR, LBR,

and LVR), against both DW and LC, using both the TPC-C and

the TPC-E workloads.

The key contributions of the paper are as follows.

 We propose two new methods for restarting from SSDs.
 We make the two new restart methods and the existing

memory-mapped method work with both DW and LC.
 We carry out an extensive evaluation of the three SSD

restart design alternatives, and the original SSD buffer-pool

extension case, for both the DW and LC policies, using

TPC-C and TPC-E. Using this evaluation, we identify the

benefits and drawback of each approach producing a

comprehensive study of these methods. Our study shows

that LVR+DW is generally the best scheme.

An additional contribution of this paper is that we also propose

a simple idea, called “aggressive fill”, that we had overlooked in

our previous work. This method dramatically improves the ramp-

up time in all cases that we study in this paper.

Collectively our contributions show that we can restart from

the SSD without negatively impacting peak performance. Fig. 2

is a representative result that summarizes our overall contribution.

Here we show the original DW design [7], compared to the

proposed LVR method on DW. The LVR method has the same

peak performance, but has a 13X speedup in the time to reach

peak performance (of this, LVR contributes to 3.8X of the

speedup, with the remainder performance improvement coming

from the aggressive fill technique).

The remainder of the paper is organized as follows: Section II

describes background information. Section III describes the three

SSD-restart designs. Section IV contains the performance

evaluation and analysis. Section V describes related work.

Section VI contains our concluding remarks.

II. BACKGROUND

For ease of reference, the commonly used acronyms that are

used in this paper are listed in TABLE I. Note that each of the

three SSD-restart designs (MMR, LBR, LVR), as well as SSDBP,

has both a DW version and an LC version. So the paper

essentially evaluates eight designs.

Next, we describe aspects of the SQL Server 2012 recovery

protocol that is relevant to the schemes presented in Section III.

A. Recovery in SQL Server 2012

1) Data Structures: The transaction log is a persistent

sequence of log records. Each log record is uniquely identified by

an ever-increasing log-sequence number (LSN), which we denote

as the currentLSN. Every time a page is changed, an UPDATE

log record is generated to indicate the change to the page. Once

the log record is created, the LSN of the record is written to the

header of the page (pageLSN). Then, the pageID (the ID of the

page that is being updated, which consists of a database ID, a file

ID, and a page number in the file), prevPageLSN (the LSN of the

page before the update took place), and the redo/undo

information are appended to the log record. Before writing a page

to disk, as per Write-Ahead Logging (WAL), the UPDATE log

records for that page are flushed to the log disk. In addition, after

a page is safely written to disk, a request to create a

BUF_WRITE log record for that page is made. When there are a

sufficient number of these BUF_WRITE log requests (2048 in

the current implementation), a BUF_WRITE log record is created

with pageIDs of all the pages in that “batch”, and their minimum

pageLSNs. The BUF_WRITE log record indicates that the disk

versions of the referenced pages are at least as new as the

minimum pageLSN.

The dirty page table stores information about dirty pages in

the main memory buffer pool. Each record in the dirty page table

stores a pageID, a recLSN (i.e., recovery LSN – the LSN of the

log record that first caused the page to be dirty), and a lastLSN

(the LSN of the last update made to the page). The recLSN

indicates the starting point for updates that are potentially not yet

reflected in the disk version of that page.

The transaction table stores information about active

transactions. Each record in the transaction table stores the

3

1. Write a BEGIN_CHKPT log record. Let the LSN of the log
record be beginChkptLSN.

2. Flush the log.
3. Write the transaction table to the log.
4. Set oldestDirtyLSN = MIN{recLSN of a dirty page}.
5. Set oldestTxLSN = MIN{beginLSN of a transaction}.
6. Write an END_CHKPT log record.
7. Write oldestDirtyLSN, oldestTxLSN, and beginChkptLSN to

the boot page of the database file.
8. Let truncationLSN = MIN{oldestDirtyLSN, oldestTxLSN,

beginChkptLSN}. Truncate the log to remove the log records
older than truncationLSN.

Fig. 3. The indirect checkpoint algorithm.

Fig. 4. The data structures used by the SSD Manager.

 beginLSN (the LSN of the first log record in the transaction) and

the endLSN (the LSN of the last log record in the transaction).

2) Checkpoints: SQL Server 2012 [17] employs a light-

weighted checkpoint scheme called “indirect checkpoint.” In this

scheme, a background-writer thread continually flushes old dirty

pages to the disk, in increasing order of the recLSN. The actual

checkpoint is a fuzzy checkpoint (e.g., [4], [9], [18]), and the

background writer method (a) allows for faster checkpoints, and

(b) enables a more continuous and smooth write traffic to the disk

subsystem. The pseudocode for the indirect checkpoint algorithm

is given in Fig. 3. Note that the dirty page table is not written to

the transactional log during a checkpoint unlike in ARIES [18].

3) Recovery: As in ARIES [18], the recovery algorithm used

in SQL Server 2012 has three phases: analysis, redo, and undo.

Analysis Phase: The analysis algorithm scans the log forward

from MIN{oldestDirtyLSN, beginChkptLSN} and builds the dirty

page table as follows: When processing an UPDATE log record,

if the page has an entry in the dirty page table, then the entry’s

lastLSN is updated, else a new entry is created with the lastLSN

set to the log record’s currentLSN. Upon encountering a

BUF_WRITE log record, the algorithm removes the entry for the

referenced page from the dirty page table (if any), if the entry’s

lastLSN is smaller than or equal to the log record’s pageLSN.

In the interest of space, we omit discussion about other

operations, such as recovering the transaction table, recovering

the lock table, and processing other types of log records.

Redo Phase: The redo algorithm scans the log forward from the

smallest recLSN in the dirty page table constructed by that

analysis phase. For each UPDATE log record, if the updated page

is referenced in the dirty page table, and if the dirty page table

entry’s recLSN is smaller than or equal to the log record’s

currentLSN, then the redo algorithm requests for the page

(loading the page to the buffer pool if not already in there). If the

page’s pageLSN is smaller than the log record’s currentLSN, then

the update is applied to the page in the buffer pool. If the

pageLSN is larger than or equal to the log record’s currentLSN,

then the redo action is simply skipped.

Note that if the pageLSN is smaller than the log record’s

currentLSN, then this pageLSN must be equal to the log record’s

prevPageLSN. Intuitively, if a redo is about to be performed, the

page must be “ready”, in the sense that it must be in the state

right before the logged update is performed. This case may seem

obvious in this discussion, but as will be described in Section III-

D, requires careful handling.

Undo Phase: The undo phase rolls back the updates of the “loser”

transactions, using the same algorithm as in ARIES [18].

B. SSD Buffer-Pool Extension

This section reviews the DW and LC SSD buffer-pool

extension designs that were proposed in [7]. Our SSD restart

methods in this paper build on these designs. For a comparison of

DW and LC with other methods, please see [7].

The main idea behind the SSD buffer pool extension is to use

the SSD to cache pages that are evicted from the buffer pool. To

manage data in the SSD, the SSD manager is introduced, which is

a software layer between the buffer manager and the I/O manager.

1) Data Structures: Fig. 4 shows the data structures used by

the SSD manager.

The SSD buǟer pool is an array of frames that are page-sized

regions in which the database pages are cached. It resides on the

SSD as a single file. This file is created (or opened if it already

exists) on the SSD when the DBMS is started.

The SSD buǟer table is an array of records corresponding to

the frames in the SSD buǟer pool. Each SSD buffer-table record,

called an FC, has the following key fields:

struct FC {
 State state;
 PageID pageID;
 int lastUseTime;
 int nextToLastUseTime;
 LSN recLSN;
 ...
};

The state field indicates the state of the FC, which can be

FREE, CLEAN, or DIRTY (discussed in more details below).

The lastUseTime and nextToLastUseTime fields are used for the

LRU-2 replacement policy. The recLSN field has the same

meaning as the recLSN field of an entry in the dirty page table. (If

the dirty SSD page is loaded into the main memory buffer pool,

and if the page is updated, the SSD frame will be invalidated but

an entry will be inserted into the dirty page table, along with the

value of this recLSN field, and not with the value of the newest

update log record.)

The SSD free list is a linked list of free FCs in the SSD buffer

table. The SSD hash table enables fast translations of a pageID to

the SSD frame, if any, that caches the specified page. The SSD

heap array embeds a dirty heap and a clean heap. The dirty heap

stores references to the dirty FCs, where the heap root has the

smallest recLSN. The clean heap stores references to the clean

FCs, where the heap root has the smallest nextToLastUseTime.

4

Fig. 5. FC states and their transitions. Note that LAZYCLEANING and

DIRTY states are only valid in the LC design.

FC State: Beyond the FREE, CLEAN or DIRTY states for an FC,

there are four other FC states: READY, READING, WRITING

and LAZYCLEANING, to deal with the use of asynchronous

I/Os in SQL Server. Fig. 5 illustrates the seven FC states and

their transitions. For example, when a FREE or a CLEAN frame

is allocated to cache a new page, the FC state is set to READY.

After an asynchronous SSD write request is issued, the FC state

is changed to WRITING. Once the write is done, the state is

changed to CLEAN if the copy of the page in the SSD is identical

to the copy on the disk. Otherwise, it is changed to DIRTY.

2) DW and LC: Both these designs share the data structures

described in the previous section. Note that the recLSN field of

each FC and the dirty heap are only used in the LC design.

The two designs also share in common the following behavior.

The disk subsystem is the “permanent home” of the data pages.

On restart, both the main memory buffer pool and the SSD buffer

pool are considered empty. When a page is requested to be

loaded into the buffer pool, if a copy of the page exists in the

SSD buffer pool, then it is loaded from there; otherwise, it is

loaded from the disks. When a clean page is evicted from the

buffer pool, it is cached in the SSD buffer pool if it meets certain

admission criteria (which generally tries to cache pages that are

likely to be re-accessed later using a random I/O pattern). To

allocate an SSD frame to store a page, if there exists at least one

free SSD frame, then the head of the SSD free list is used;

otherwise, the root of the clean heap is chosen for replacement.

When a clean SSD frame is chosen for replacement, the page

content is simply discarded (because it is identical to the disk

version of the page). When a page is modified in the buffer pool,

the SSD frame that caches the page, if any, is invalidated (i.e.

marked FREE, with necessary operations on the related data

structures, e.g. to remove an entry from the SSD hash table).

The two designs mainly differ in the way they deal with dirty

pages that are evicted from the buǟer pool. In the DW design,

dirty pages evicted from the buffer pool are written both to the

SSD buffer pool and to the disks. In effect, the SSD buffer pool

acts as a “write-through” cache for dirty pages. In the LC design,

on the other hand, dirty pages evicted from the buffer pool are

written only to the SSD. A background lazy cleaner thread is in

charge of copying dirty SSD pages to the disks. In effect, the

SSD buffer pool acts as a “write-back” cache.

III. RESTART DESIGN ALTERNATIVES

Now, we explain the three SSD restart design alternatives.

Section III-B explains the Memory-Mapped Restart (MMR)

scheme that was adapted from Bhattacharjee et al. [3]. Section

III-C and III-D introduce our new restarting designs, Log-based

Restart (LBR) and Lazy-Verification Restart (LVR), respectively.

These three schemes work with both DW and LC as described

below. But, before we can use the DW and LC designs as

described in Section II, we need to make some changes to these

designs to allow for correct restart from the SSD. In the next

section, we first describe these basic changes.

A. Pitfalls in Using the SSD after a Restart

When the contents of the SSD buffer pool is reused after a

restart, there are a number of pitfalls to watch out for, in both the

DW and the LC designs, which require changes to these base

designs. These changes are described below.

In DW (originally pointed out by [3] for the TAC design),

suppose that the system crashes after the SSD write has

completed, but before the disk write has completed. Now, after a

restart, the SSD page is newer than the disk page, but the system

does not know about it because the FC entry is marked as

CLEAN. So when the SSD page is replaced, it is simply

discarded. Later when the page is needed, an older version will be

loaded from the disks, unexpectedly. The page may not even be

recoverable, because the update log records may have been

truncated. The solution is to delay modifying the FC until both

the SSD write and the disk write have completed.

In LC, our first implementation resulted in extremely long

redo time. (About 30 hours in one experiment!) The reason for

the long redo time was that the dirty pages in the main memory

buffer pool were organized as a sorted list (by recLSN) as in the

original SQL Server code. In the original SQL Server code,

newly generated dirty pages are inserted to one end of the list,

because they get ever-increasing recLSNs; and the entries from

the list are extracted from the other end (to be flushed). However,

when the SSD buffer pool is reused during a restart, dirty pages

are no longer generated in increasing order of recLSN. In

particular, if a dirty page is loaded from the SSD, the FC’s

recLSN will be used. So essentially for every dirty page in the

SSD, a linked list (of millions of entries) has to be traversed to

keep the list ordered. This turns out to be very expensive. The

solution we adopted is to replace the sorted list with a heap.

Two other parts in LC also needed changes. The generation of

the BUF_WRITE log records was modified such that, upon

completing a write of a dirty page to the SSD, the system does

NOT generate a BUF_WRITE log record, because the disk

version of the page is still old. Instead, a BUF_WRITE log record

is generated after the lazy cleaner thread finishes copying a dirty

SSD page to the disks. Also, the checkpoint logic was modified

to consider the dirty pages in the SSD buffer pool when

computing the oldestDirtyLSN value, in addition to the dirty

pages in the main memory buffer pool. In particular,

oldestDirtyLSN is the oldest recLSN of the dirty pages in the

main memory buffer pool and in the SSD buffer pool.

B. Memory-Mapped Restart (MMR)

5

TABLE II

CASES THAT REQUIRE FLUSHING THE FC STATE CHANGES. F,

C, D, R, WR AND LR STAND FOR THE FREE, CLEAN, DIRTY,

READY, WRITING AND LAZYWRITING STATES, RESPECTIVELY.

 DW LC

Case 1) When writing a page

to a free SSD frame

1) WR Ą C 1) WR Ą C/D

Case 2) When writing a page

to a clean SSD frame

1) C Ą R

2) WR Ą C

1) C Ą R

2) WR Ą C/D

Case 3) When modifying an

SSD page

1) C Ą F 1) C/D Ą F

Case 4) When lazycleaning

an SSD page

N/A 1) LR Ą C

Bhattacharjee et al. [3] proposed to extend their TAC SSD

buffer pool extension design [6] to reuse the cached pages in the

SSD buffer pool upon a restart, by storing the SSD buffer table as

a memory-mapped file. We use this memory-mapped-file idea to

extend the DW and LC designs [7], and call the resulting design

Memory-Mapped Restart (MMR). The details for this scheme are

described below.

1) The FC Fields to Harden: The fields in an FC that should

be hardened include: state, pageID, lastUseTime, and

nextToLastUseTime.

The SSD buffer table is broken into two parts: the memory-

mapped part that stores the above four to-be-hardened fields of

each FC, and the volatile part that stores the remaining fields.

2) Memory-Mapped File Implementation: When the

database system starts up, several Windows APIs are used:

CreateFile() with WRITE_THROUGH and NO_BUFFERING

flags is used to create a file for the memory-mapped part of the

SSD buffer table, CreateFileMapping() is used to create a file

mapping object, and MapViewOfFile() is used to map it to the

address space. After each important update to the memory-

mapped part of the SSD buffer table, FlushViewOfFile() is called

to flush the modified FC to the file.

3) When to Harden: Flushing changes to the memory-

mapped file may be expensive, and can hinder the sustained peak

performance during regular forward processing. Hence, instead of

flushing changes on every FC state transition (See Fig. 5), we try

to minimize the number of flushes without affecting correctness.

For example, when a clean SSD frame is about to be replaced, we

have to flush the state change. Otherwise, after a restart, the

recovered FC may erroneously indicate that the SSD frame is

clean (with pageID of the old page that was being replaced). On

the other hand, when a free SSD frame is about to receive a new

page, the state change need not be flushed. At a restart, the

recovered FC will be in the FREE state (instead of READY).

This is exactly what is expected, because the write to the SSD

frame did not finish, and therefore the SSD page cannot be reused.

Even if a recovered FC is found to be in the READY state, its

state will need to be changed to FREE.

TABLE II summaries all possible cases that require flushing

state changes in the DW and LC designs, respectively. For

example, when writing a page to a clean SSD frame (Case 2) in

the DW design, each of two state changes (from CLEAN to

READY and from WRITING to CLEAN) is flushed.

4) Recovery: The recovery algorithm is the same as in Section

II-A3, with the addition that, at the beginning of the analysis

phase, the SSD buffer table is recovered.

To recover the SSD buffer table, the memory-mapped part of

the SSD buffer table is loaded from persistent storage. Next, the

SSD buffer table is processed as follows: First, every FC state

must be one of FREE, CLEAN, or DIRTY. FC entries in the

READY and the WRITING states are treated as FREE, while FC

entries in the LAZYCLEANING and the READING states are

treated as DIRTY. Second, the data structures (described in

Section II-B1) are rebuilt. In particular, references to the

CLEAN/DIRTY FCs are inserted to the clean/dirty heap, and also

inserted to the SSD hash table; and, free frames are linked

together in the SSD free list.

A final detail is how to recover the recLSN field for each dirty

FC. One possible solution is to include this field in the memory-

mapped part of the SSD buffer table. But this approach would

mean more data being flushed during regular forward processing.

In MMR, we chose to recover this field of each dirty FC at the

end of the analysis phase, when all the dirty pages and their

recLSN values are in the dirty page table.

C. Log-Based Restart (LBR)

The main idea behind LBR is to checkpoint the SSD buffer

table during a normal database checkpoint, and to log the updates

made to the SSD buffer table in the database transaction log. The

up-to-date SSD buffer table can be reconstructed during the

analysis phase, along with the construction of the dirty page table.

1) The FC Fields to Harden: The fields in an FC that should

be hardened (or flushed) include: state, pageID, lastUseTime, and

nextToLastUseTime. This list is exactly the same as in MMR.

The hardening appears in the form of newly introduced log

records, as discussed below.

2) SSD Log Records: During forward processing, the

following four types of new log records are generated.

SSD_CHKPT: During a checkpoint, the whole SSD buffer table

is hardened to the transactional log. More specifically, for each

FC, the four fields pointed out in Section III-C1 are hardened.

Theoretically a single log record is enough. But to make sure the

log record size is not too large, a sequence of SSD_CHKPT log

records are used. Each such log record hardens a pre-specified

number (we use 64) of FCs.

SSD_PRE_WRITE_INVALIDATE: Before a page is written to

the SSD, an SSD frame is allocated. If there is no free SSD frame

available, a clean frame is chosen to be replaced, and an

SSD_PRE_WRITE_INVALIDATE log record is generated, with

a single value: the SSD frameNo.

As the name indicates, this type of log records is generated

when an SSD frame is invalidated because a write to the page is

about to take place, not because of other reasons. In particular,

another case when an SSD frame needs to be invalidated is when

the page is modified in the buffer pool. In the latter case, an

existing type of log records, i.e. the UPDATE log record, will be

generated, and therefore no new SSD log record is needed.

SSD_POST_WRITE: After a page is written to the SSD, an

SSD_POST_WRITE log record is generated describing the

metadata for the page. The data fields associated with this log

6

record are those pointed out Section III-C1, plus the SSD

frameNo.

SSD_LAZY_CLEANED: This type of log records is specific to

the LC design. After a dirty SSD page is lazily cleaned, an

SSD_LAZY_CLEANED log record is generated, which stores

the SSD frameNo.

3) When to Flush: Among the four new types of SSD log

records, only the SSD_PRE_WRITE_INVALIDATE log record

must be flushed to disk, before the thread that generates the log

record can continue. The reason for this requirement is that a

thread that generates an SSD_PRE_WRITE_INVALIDATE log

record will then writing a page to the SSD frame. If the log is not

flushed before the page is written to the SSD, and a crash takes

place, upon a restart the system will believe that the SSD frame

contains the old page (before the pre-write invalidation took

place), an obvious inconsistency.

The other three types of log records do not require an

immediate log flush for the following reasons. The SSD_CHKPT

log record does not need to be flushed immediately, because if a

crash happens, at recovery the system can use a previous

checkpoint – the recover might take longer, but the system will

still recover correctly. The SSD_POST_WRITE log does not

require an immediate log flush, because if a crash happens, at

recovery the system will regard this SSD frame as FREE (even

though the SSD frame contains a valid page), without affecting

correctness. The SSD_LAZY_CLEANED log record does not

require an immediate log flush, since at recovery, the system will

regard this SSD frame as DIRTY (even though the frame is

CLEAN). The consequence is that when the page is evicted from

the SSD, it needs to be written, wastefully, to the disks.

To reduce frequent log flushes, we introduce the Group-

Writing Optimization. Multiple (up to eight in our

implementation) write requests to the SSD, that require replacing

some existing clean frames, are gathered (and the issuing thread

suspended) so that a single log flush is performed before the write

requests are issued. To prevent stalling, a timeout feature is used

such that no SSD write request is delayed more than the timeout

duration.

4) Recovery: The recovery algorithm is modified from

Section II-A3, by recovering the SSD buffer table during the

analysis phase. In particular, this section describes the behavior

of the analysis algorithm, upon encountering the five types of log

records (the four new SSD log records, plus the UPDATE log

records).

At the beginning of the analysis phase, all the SSD frames are

marked as FREE.

Before the last BEGIN_CHKPT log record in the log is

encountered, the analysis algorithm is the same as that described

in Section II-A3. After the last BEGIN_CHKPT log record is

encountered, the analysis algorithm handles the five types of log

records as follows:

To process an SSD_CHKPT log record, the 64 (or so) FCs are

recovered from the values stored in the log record. In case the FC

state is DIRTY, the recLSN field is recovered via a lookup in the

dirty page table. The SSD hash table is updated as well, unless

the FC state is FREE.

To process an SSD_PRE_WRITE_INVALIDATE log record,

the corresponding FC is invalidated.

To process an SSD_POST_WRITE log record, the algorithm

used is exactly the same as the one used in the processing of an

SSD_CHKPT log record, with the difference that here a single

FC is processed.

To process an SSD_LAZY_CLEANED log record, the FC

state is changed from LAZYCLEANING to CLEAN.

To process an UPDATE log record, in addition to the existing

actions (Section II-A3), the FC that references this page, if any,

needs to be invalidated.

D. Lazy-Verification Restart (LVR)

The main idea behind the LVR scheme is to use a background

thread, called the FC flusher thread, to asynchronously harden

the SSD buffer table to a persistent storage called the SSD buffer-

table file. Upon a restart, the scheme recovers the SSD buffer

table by loading from the SSD the buffer table file, before

starting the analysis phase.

Due to the asynchronous nature of the flushing of the SSD

buffer table, the recovered SSD buffer table may contain

incorrect information. To guarantee correctness, when the content

in the SSD buffer table are potentially out-of-date, the LVR

recovery scheme must ensure the following two properties:

Property 1 (Safe-to-Reuse): The databases should be

consistent, if the design chooses to reuse a page in the SSD buffer

pool upon a restart:.

Potential violations of the Safe-to-Reuse property include the

following:

Violation_A: A recovered FC has a pageID that is different from

that of the actual SSD page. If one page (with the FC’s pageID)

is requested but a different page (that is in the SSD buffer pool) is

delivered, the databases will not be consistent.

Violation_B: A recovered FC has a pageLSN that is different

from that of the actual SSD page. The database may be

inconsistent because, during redo, an UPDATE log record may

be erroneously applied to a wrong version of the page.

Violation_C: A dirty SSD page is considered clean. Before a

restart, an SSD page may be newer than its disk version, and the

FC was correctly marked as dirty. But upon the restart, an old

version of the FC may be recovered, which may indicate that the

SSD frame is clean. The consistency of the database will now be

jeopardized because, when the page is evicted from the SSD, it

will not be written to the disks, leaving an old version of the page

in the system.

Violation_D: The existence of an old SSD page, together with

log truncation, may lead to data loss. The scenario is that an SSD

frame storing a valid page is invalidated because the memory

version of the page was modified. Later, the page gets written

directly to the disks, bypassing the SSD. Upon restart, the old

page in the SSD is found. Furthermore, assume that the recovered

FC matches the old page. The log may have been truncated such

that the recovery algorithm now does not encounter any

UPDATE log record for that page. This leads to inconsistency

because the system will believe the (old) SSD page is up-to-date.

In addition, the system should also ensure an inverse property:

Property 2 (Safe-to-Discard): The databases should be

consistent, if the design chooses to discard a page in the SSD

buffer pool upon a restart, even if the SSD page is newer than the

disk version.

7

1. Set beforeHardeningLSN = the LSN of the tail of the log.
2. Load (the old values of) the chunk of FCs from the SSD buffer-table

file to a temporary space in memory.
3. For each SSD frame belonging to the chunk:

a) Let currentFC denote the FC in the SSD buffer table, and
tmpFC denote the FC in the temporary space.

b) Try to latch the currentFC, without waiting. If the latching
fails, skip it and go to the next frame.

c) If currentFC.state = FREE, tmpFC.state = FREE, and
tmpFC.blank = FALSE, release the latch and skip the FC.

d) Set state, pageID, lastUseTime, nextToLastUseTime, and
recLSN of tmpFC by copying from currentFC.

e) Release the latch on currentFC.
f) Set

tmpFC.beforeHardeningLSN = beforeHardeningLSN.
g) Set tmpFC.blank = FALSE.

4. Write the chunk of tmp FCs to the SSD buffer-table file.

Fig. 6. The algorithm of the FC Flusher Thread used in the Lazy-

Verification Restart (LVR) method to harden one chunk of FCs.

1. Initialize entries in the SSD buffer table, by loading from the SSD
buffer table file. The blank entries are treated as FREE.

2. If the server is recovering from a shutdown:
a) Mark every FC, which is not FREE, as UNVERIFIED.

3. Invalidate every FC whose MAX{pageLSN, beforeHardeningLSN} <
truncationLSN.

4. Build the SSD hash table. In the process, if it is found that two FCs
have the same pageID, invalidate the one with an earlier pageLSN.

5. Build the SSD heap array and SSD free list.
6. If the server is recovering from a crash, for each FC that is not FREE:

a) Load the SSD page to memory.
b) If the FC and the page have different pageID, invalidate the FC.
c) If the FC and the page have different pageLSN, invalidate the

FC.
d) If the page has an incorrect checksum, then invalidate the FC.

7. Perform the analysis algorithm as discussed in Section II-A3 with the
following additional operation. Upon encountering a BUF_WRITE log
record, invalidate the FC, if any, with the same pageID but with a
pageLSN < the log record’s pageLSN.

8. Perform redo and undo.

9. Start the lazy cleaner thread (for LC only), and the FC flusher thread.

Fig. 7. The recovery algorithm used in the Lazy-Verification Restart

(LVR) method.

The above Safe-to-Discard property is trivial to guarantee

because of our modifications described at the end of Section III-

A. Recall that the checkpoint algorithm determines the

oldestDirtyLSN as the minimum recLSN of the dirty pages in the

main memory buffer pool and the SSD buffer pool. Hence, when

an SSD page is newer than the disk version before a restart, the

oldestDirtyLSN will be sufficiently small, such that upon a restart

all the log records that are needed to bring the old disk page up-

to-date will be available to the recovery algorithm.

Sections III-D1 – III-D5 present the LVR design, and shows

how this design avoids the four violations to the Safe-to-Reuse

property. III-D6 discusses three pitfalls related to Violation_D, i.e.

having an SSD page older than the disk version.

1) The FC Fields to Harden: The fields in an FC that should

be hardened include: state, pageID, lastUseTime, and

nextToLastUseTime. These are the same as in the MMR and the

LBR designs.

In addition, the LVR scheme also hardens the following two

new fields: a blank flag, and beforeHardeningLSN. The blank

flag is used to indicate whether an FC in the SSD buffer-table file

was never written to, after the file was created. The

beforeHardeningLSN field is the LSN of the tail of the log,

before the value of the FC was hardened. The latter field is

essential to avoid Violation_D.

2) The FC Flusher Thread: The FC flusher thread repeatedly

scans the SSD buffer table in chunks, and hardens the FCs in

each chunk. Fig. 6 shows the algorithm to harden one chunk.

Step 1 remembers the LSN of the tail of the log. This LSN is

then assigned to all the hardened FCs in this chunk (Step 3f). The

usage of this field is to avoid Violation_D, as will be discussed in

the recovery algorithm (Section III-D4).

Step 2 of the algorithm is needed to deal with the FCs for

which a latch cannot be acquired. At Step 3b, the FC flusher

thread tries to latch an FC, in preparation for copying its data out

for flushing. It is not a good option for the FC flusher thread to

acquire an infinite latch, because that would cause the design to

take a long time to flush the SSD buffer table. But to enable the

FC flusher thread to skip a busy FC, it needs to know what

information to flush for a skipped FC. (Here we assume multiple

FCs are flushed using one I/O operation.) The safest thing would

be to treat a skipped FC as FREE in the group flush. But, that

would overwrite the useful information for this FC, in the SSD

buffer table file, leading to a smaller SSD re-utilization upon a

subsequent restart. The solution in LVR is that, in Step 2, the FC

flusher thread reads a group of FCs from the SSD buffer table file.

So, for the skipped busy FCs, the original metadata in the SSD

buffer table file is written back.

Step 3 updates information in the loaded chunk, with

information in the SSD buffer table, for the FCs where a latch

could successfully be acquired.

Step 4 hardens the chunk. After hardening a chunk, the FC

flusher thread may pause to yield the CPU for other activities.

The default values in the LVR scheme are as follows: The

SSD buffer table is divided into 1024 chunks. If a checkpoint is

taking place, the FC flusher thread pauses every 64 chunks, and

yields the CPU. If no checkpoint is taking place, the FC flusher

thread pauses every 8 chunks, sleeping for 500 milliseconds.

3) Checkpoints: The checkpoint algorithm in LVR is slightly

modified from the algorithm in Section II-A2. The modification

is to make sure that the FC flusher thread finishes a complete

pass of hardening the SSD buffer table during a checkpoint. In

particular, at the beginning of a checkpoint, the updated

checkpoint algorithm takes a snapshot of where the FC flusher

thread is at; and before the END_CHKPT log record is generated,

the checkpointing thread is blocked until the FC flusher thread

goes past the snapshot location. The modification is needed to

avoid Pitfall 3 (discussed below in Section III-D6).

4) Recovery: The recovery algorithm is shown in Fig. 7.

Step 1 recovers the initial values of the SSD buffer table by

loading it from the SSD buffer table file, before verification.

Step 2 marks the FCs UNVERIFIED, but only if the system is

recovering from a shutdown. The UNVERIFIED frames will then

be lazily verified later, when the actual SSD pages are loaded into

memory, either during the redo phase or during forward

processing (Section III-D5). If the system is recovering from a

8

Fig. 8. An old version of a page in the SSD may result in a redo failure.

crash, the recovery algorithm will eagerly verify the integrity of

the SSD pages (in Step 6 of the recovery algorithm). So, there is

no need to mark the FCs as UNVERIFIED here. To be able to tell

whether the system is recovering from a crash, one method is to

store a flag called ShutdownComplete in a persistent location.

The flag is set to true at the end of a server shutdown, and set to

false at the beginning of the recovery process. The recovery

algorithm knows that it is recovering from a shutdown, if and

only if the flag (before the recovery algorithm set it to be false) is

set to true.

The recovery algorithm uses two levels of verifications. A

“shallow” verification is performed in Step 3. It is shallow

because the verification is done purely by studying the metadata.

A “deep” verification is performed in Step 6 (if recovering from a

crash), or in case a page is loaded from the SSD (Section III-D5),

by studying the information stored in the actual SSD pages.

Step 3 uses a shallow verification to avoid Violation_D, i.e. it

deals with the case that a page found in the SSD buffer pool

(upon a restart) may be older than the disk version. The

correctness of the solution comes from the fact that it guarantees

no useful UPDATE log records to the page may have be

truncated. Here an UPDATE log record is useful if it is needed to

bring the old SSD page up-to-date; i.e. if its currentLSN > the

FC’s pageLSN.

Theorem 1: Given a recovered FC, if MAX{pageLSN,

beforeHardeningLSN} ≥ truncationLSN, no UPDATE log records

to the page, later than pageLSN , may have been truncated.

The proof of the theorem is omitted in the interest of space,

and can be found in the supplemental material [23].

The intuition behind Step 2 and Theorem 1 is that, however

old the pageLSN of an SSD page may be, as long as the system

knows that the page was valid at some later time

(beforeHardeningLSN), and this later ‘time’ is newer than the

truncationLSN, then it is safe to reuse the SSD page. This

guarantee is important in maximizing the reutilization rate of the

pages previously cached in the SSD buffer pool. Without it, most

of the clean pages in the SSD would have to be discarded at a

restart, because they have old pageLSNs.

Step 4 builds the SSD hash table. The step also eliminates

conflicts, as multiple FCs may have the same pageID. Without

eliminating the conflicts, if a page is requested, the system would

not know which SSD frame to load the page from.

Step 5 builds the other data structures. In particular, the SSD

heap array and the SSD free list.

Step 6 (only applicable if recovering from a crash) uses a

“deep” verification to make sure that, after this step, all the

frames (that are not FREE) in the SSD buffer table are safe to use.

The step scans the SSD buffer pool, and for each frame that has

not been invalidated, Step 6(a) loads the SSD page. Then, Step

6(b) verifies the pageID making sure that the recovered FC’s

pageID matches the pageID stored in the actual page (this step

avoids Violation_A). Step 6(c) verifies the pageLSN (this step

avoids Violation_B). Note that by verifying the pageLSN, the

algorithm also avoids Violation_C, for the following reason: If an

SSD frame stores a dirty page, but the recovered FC shows that

the page is clean, then the recovered FC store a different

pageLSN, leading to the invalidation of the FC.

In addition, Step 6(d) validates the checksum. Note that SQL

Server already has a checksum scheme (to avoid torn writes), but

here in LVR the scheme has to be modified. In SQL Server, after

a page (either from the SSD or from the disks) is loaded to

memory, if the checksum value stored in the page is different

from the checksum computed over the page content, then the

page is reloaded, up to four times, before media recovery is

performed. In Step 6(d) in LVR, a page that is loaded from the

SSD may fail the checksum test because the recovered FC

contains wrong information. For instance, suppose that the

system crashed while a write was taking place to a frame in the

SSD buffer pool. During recovery, this SSD page will fail the

checksum test; but, it is meaningless to read the bad page from

the SSD again and again. In Step 6(d), such an FC is simply

invalidated.

Step 7 performs analysis. The handling of BUF_WRITE log

record is modified to avoid Pitfall 1 as will be discussed in

Section III-D6.

Step 8 performs the traditional redo and undo phases.

Step 9 starts the lazy cleaner thread and the FC flusher thread.

Note that the lazy cleaner thread is started at the end of the

recovery algorithm. If it were started at the beginning, then the

design would suffer from Pitfall 2 (see Section III-D6).

5) Lazy Verification: As the steps 2 and 6 of the recovery

algorithm (Section III-D4) show, after the system recovers from a

shutdown, some FCs may be marked as UNVERIFIED. The

integrity of the corresponding SSD pages will be lazily verified

when the SSD page is loaded into main memory, either during

the redo phase or during forward processing. The verification is

the same as steps 6(a) – 6(d) of the recovery algorithm. If the

verification fails, then the FC is invalidated, and the page is

loaded from the disk(s).

6) Pitfalls: There are several pitfalls to avoid when handling

old SSD pages.

Pitfall 1: An older version of a page in the SSD, in combination

with BUF_WRITE log records, may result in a redo failure.

In the presence of BUF_WRITE log records, an old SSD page

may result in a redo failure, as illustrated in Fig. 8. Intuitively, a

BUF_WRITE log record indicates that a page has been flushed to

the disks; therefore the redo algorithm will skip older update log

records. However, this behavior is not ok if the redo algorithm

9

TABLE III

MAXIMUM SUSTAINABLE IOPS FOR EACH DEVICE WHEN USING

PAGE-SIZE (8KB) I/Os. DISK WRITE CACHING IS TUREND OFF.

READ Ran. Seq. WRITE Ran. Seq.

18 HDDs 2,718 188,244 18 HDDs 2,610 2,970*

SSD 12,182 15,980 SSD 12,374 14,965

has an old SSD page and expects to use the update log records to

bring the page up-to-date.

To avoid this pitfall, LVR modifies the analysis algorithm

such that when processing a BUF_WRITE log record, the older

version of the page in the SSD, if any, is invalidated first.

Pitfall 2: The lazy cleaner thread, if it is working during the

analysis phase, may replace a newer disk page with an older SSD

page, and may lead to a redo failure in the future.

The pitfall can also be illustrated using the example shown in.

Imagine that at T1, the SSD page with pageLSN1 is dirty. During

the analysis, but before T7, this old SSD page may be written to

the disk by the lazy cleaner thread, overwriting the newer disk

version. At T7, according to the solution to Pitfall 1, the FC is

invalidated, hoping that a later redo action can access the correct

version of the page from the disks. Unfortunately, the redo action

at T10 will still fail, because the disk page is now also old.

To avoid this pitfall, LVR starts the lazy cleaner thread at the

end of the recovery algorithm, or at least after the analysis phase.

Pitfall 3: Most pages in the SSD may fail to be reused, if the

server is restarted right after a checkpoint.

Recall that (Section III-D4) during the analysis phase, an FC is

invalidated, if MAX{pageLSN, beforeHardeningLSN} <

truncationLSN. Also recall that (Section II-A2) truncationLSN =

MIN{oldestDirtyLSN, oldestTxLSN, beginChkptLSN}. If there

are no dirty pages or pending transactions before the restart, then

truncationLSN is equal to beginChkptLSN, which may be newer

than both the pageLSN and the beforeHardeningLSN of most of

the FCs (since a checkpoint was issued right before the restart).

That is why most of the FCs may fail to be reused after the restart.

This is a performance pitfall, rather than a correctness pitfall.

However, without solving the problem, the reutilization rate of

the SSD pages can be close to zero.

LVR avoids this pitfall as follows: After a BEGIN_CHKPT

log record is generated, LVR remembers where the FC flusher is

processing. The generation of the END_CHKPT log record is

postponed until the FC flusher thread finishes a complete pass of

the SSD buffer table. The solution circumvents Pitfall 3 because

the beforeHardendingLSN of an FC will now be newer than the

beginChkptLSN. To minimize the delay in generating the

END_CHKPT log record, during a checkpoint LVR increases the

eagerness of the FC flusher thread. In our experiments with a

140GB SSD buffer-pool, the introduced delay is only several

seconds.

IV. EVALUATION

This section compares the peak-to-peak interval and the peak

performance of the three SSD restart designs, against the default-

restart method without reusing data previously cached in the SSD.

A. Experimental Setup

We implemented the three SSD restart designs (MMR, LBR

and LVR), as well as the default restart method (denoted as

SSDBP, for the default no-restart SSD buffer-pool extension), in

SQL Server 2012 CTP3. For each of the four methods, both a

DW version and an LC version were implemented. For LC, the

“Dirty Fraction” parameter was set to 20%, meaning that the LC

thread starts working once the number of dirty SSD pages

exceeds 20% of the SSD buffer pool size.

The experiments were performed on an HP ProLiant DL180

Server box with 2.13 GHz Intel dual quad-core Xeon processors

(Nehalem) running 64-bit Windows Server 2008 R2 with 32GB

of DRAM (24GB of DRAM was reserved for SQL Server). The

databases were created on a filegroup that spans eighteen 300GB

10,000 RPM SAS hard disk drives (HDDs). Two additional

HDDs were dedicated to the OS and the transactional log,

respectively. The SSD buffer pool used 140GB out of a 160GB

SLC Fusion ioDrive. The SSD buffer-table file is stored on the

same Fusion device.

TABLE III shows the IOPS of the SSD and the aggregate of

the 18 HDDs (obtained using Iometer [11]).

For the workload, we used the TPC-C [21] and TPC-E [22]

benchmarks, which are update-intensive and read-intensive

OLTP workloads respectively. In both cases, the database size

was around 200GB (the TPC-C database has 2K warehouses; the

TPC-E database has 20K customers)
†
. At this setting the database

is larger than the main memory and the SSD buffer pool, and

provides the most insightful experimental point to study the SSD

buffer pool extension design [7].

For each workload, we used different throughput metrics and

recovery intervals according to the TPC specifications. For TPC-

C we measured the number of new orders that can be fully

processed per minute (tpmC), and set 30 minutes for the recovery

interval. For TPC-E we measured the number of (Trade-Result)

transactions executed within a second (tpsE), and set 7.5 minutes

for the recovery interval. The throughput is sampled using a one

minute interval.

In all experiment, for LBR, we used the Group-Writing

Optimization see Section III-C3) to (gather 8 write requests to the

SSD. For LVR, the hardening interval (see Section III-D2) was

set to 500ms.

1) The Impact of Aggressive Fill: Our earlier results [7]

showed that the ramp-up time of an OLTP workload when using

an SSD buffer pool extension if very long. The reason for this

behavior is that to reach peak performance, the (large) SSD

buffer pool needs to be filled, and to fill the SSD buffer pool, the

data must be first loaded from the slow HDD subsystem. Since

the SSD buffer pool largely caches pages that are accessed using

a random I/O access pattern, it implies that the rate at which the

SSD buffer pool fills up is gated by the random I/O performance

of the HDD subsystem.

† Disclaimer: While we have used the TPC-C and the TPC-E benchmark

workloads as the basis of analysis presented in this paper, the results

presented are not audited or official results and, in fact, were not run in a

way that meets all of the benchmark requirements. The results are shown
for the sole purpose of providing relative comparisons within the context of

this paper and should not be compared to official TPC results.

10

Fig. 11. (TPC-C) Peak-to-peak interval (in seconds) for the case of

restarting from a shutdown.

Fig. 12. (TPC-C) Peak-to-peak interval (in seconds) for the case of
restarting from a crash.

Fig. 9. Ramp-up times on the TPC databases with DW. SSDBP_OLD

does not use aggressive fill (as in [7]). SSDBP uses aggressive fill.

Fig. 10. (TPC-C) Throughput after restarting from a shutdown.

(Restarting from a crash is similar.)

A simple but powerful idea, called “aggressive fill”, can be

used to significantly shorten the ramp-up time. In particular,

before the SSD buffer pool is filled, every one-page HDD read

request is expanded to read multiple (8 in our implementation)

adjacent pages, including the requested page
‡
. As Fig. 9 shows,

this technique reduced the ramp-up time by 7X and a 3.6X for the

TPC-C and TPC-E databases, respectively.

In the remainder of this section, aggressive fill is used in all

the implementations; and SSDBP (with aggressive fill) will be

used as baseline when evaluating the effectiveness of the three

SSD-restart designs.

B. TPC-C Evaluation

1) Sustained Throughput: Fig. 10 presents the steady-state

throughput of the eight designs (four for DW and four for LC),

for TPC-C, after restarting from a shutdown. (The results when

restarting after a crash are similar, and omitted in the interest of

space.)

As can be seen in Fig. 10 , MMR’s performance is only 62%

and 46% as that of SSDBP, for DW and LC, respectively. LBR

and LVR both have performance close to that of SSDBP,

although LVR is slightly better.

Forward processing in MMR is hindered due to the additional

I/O traffic that is required to synchronize the in-memory SSD

buffer table with the memory-mapped file. For example, the

percentage of busy time of the SSD increased from 79% (SSDBP)

to 95% (MMR) in LC. A dedicated SSD could be used to store

only the memory-mapped file (in some experiments in [3] a

dedicated Fusion I/O device was used only for this purpose), but

this option can be very expensive.

Forward processing in LBR is slowed down as LBR has to

wait for certain SSD log records to be flushed to the log disk,

which increases the cost associated with running each transaction.

‡ This technique is already implemented in the Enterprise versions of SQL

Server to quickly fill the main memory buffer pool – here, we extend this

technique to also aggressively fill the SSD buffer pool.

However, due to the Group-Writing Optimization (Section III-

C3), LBR only lost 5% - 7% of the performance (over SSDBP).

We have observed that without this optimization, LBR may lose

up to 30% in performance over SSDBP.

Note that the LVR scheme (like MMR) also puts additional

load on the SSD in order to harden the SSD buffer table.

However, by controlling how eagerly the SSD buffer table is

hardened (recall that the hardening interval is set to 500ms), the

algorithm can control the additional traffic that it adds to the SSD.

For example, in this experiment, with LC the SSD busy time

went up by just 3% (from 79% in the SSDBP case, to 82% with

LVR). From this observation, we can also infer that if the SSD is

significantly busy LVR could overload the SSD, degrading the

sustained performance. However, LVR can also be modified to

adjust the hardening interval dynamically using the current SSD

utilization – such modifications are part of future work. In

addition, LVR gathers information from many FCs and use one

I/O to harden all of them. Such infrequent, large-size I/O pattern

is performance-friendly to today’s block devices.

2) Peak-to-peak Interval: Fig. 11 compares the peak-to-peak

intervals of the restart schemes, when restarting after a shutdown.

For each of the three SSD-restart designs, the speedup over the

SSDBP case is labeled on top of its bar. The SSD-restart designs

provide significant speedup over SSDBP, ranging from 1.4X to

3.5X. With the DW policy, the three SSD-restart designs brought

similar speedups (about 3.5X). With the LC policy, MMR has the

best speedup (2.8X), while LBR and LVR have less speedup

(about 1.4X).

Fig. 11 also shows the detailed breakdown of the peak-to-peak

restart interval.

The shutdown time is a few hundred seconds in all the cases.

The time is needed mainly to flush the dirty pages in the memory

buffer pool.

11

Fig. 13. (TPC-E) Throughput after restarting from a shutdown.

(Restarting from a crash is similar.)

Fig. 14. (TPC-E) Peak-to-peak intervals (in seconds) for the case of

restarting from a shutdown.

Fig. 15. (TPC-E) Peak-to-peak interval (in seconds) for the case of

restarting from a crash.

The recovery time exhibits a big difference, between the DW

case and the LC case. With the DW policy, the SSD-restart

designs have recovery time in the order of seconds. With the LC

policy, the SSD-restart designs have recovery time in the order of

1000 seconds. The difference lies in the value of oldestDirtyLSN.

In the DW case, oldestDirtyLSN is NULL, because all the dirty

pages in memory were flushed before the shutdown. In the LC

case, oldestDirtyLSN is not NULL, as there were dirty pages in

the SSD at shutdown – the policy allows the dirty pages to stay in

the SSD. So in the LC case, during recovery a much longer log

segment needs to be scanned.

Zooming into the recovery time of the DW case, we notice that

while SSDBP has almost instant (0.05 sec) recovery time, the

SSD-restart designs have several seconds of recovery time. The

reason is that the SSD-restart schemes need to reconstruct the

SSD buffer table. LVR’s SSD buffer-table file is twice as large as

MMR’s memory-mapped file. So LVR’s recovery time (5.13 sec)

is twice as long as MMR’s recovery time (2.38 sec). LBR’s

SSD_CHKPT log records collectively has the same size as

MMR’s memory-mapped file, but LBR’s log records are stored

in a disk, which is slower than Fusion. That is why LBR’s

recovery time (12.1 sec) is longer.

Zooming into the recovery time of the LC case, we notice that

SSDBP has the longest restart time. This shows that the SSD-

restart schemes did receive benefit by reusing the SSD pages

during recovery. MMR has the shortest recovery time (2.8X

better than SSDBP, instead of 1.4X or 1.5X for LBR and LVR).

But this may be due to the fact that its sustained performance was

about half of the performance of LBR and LVR – a dirty page

may have more UPDATE log records to redo.

For the ramp-up time, the SSD-restart schemes brought an

order of magnitude speedup. This is expected because the SSD-

restart schemes start with a warm SSD buffer pool, while SSDBP

starts with a cold SSD buffer pool. Note that after recovery, we

gathered throughput data every minute. So all the ramp-up time

data points reported in the paper are multiples of 60 seconds.

Fig. 12 compares the peak-to-peak intervals of the restart

schemes, when restarting after a crash. The SSD-restart designs

exhibit significant speedup over SSDBP, ranging from 1.3X to

1.8X. MMR has the best speedup over SSDBP, but LBR and

LVR are close. A major distinction from the shutdown case is

that, for DW, the recovery time is in the order of 1000 seconds,

instead of seconds. This is because, for a crash recovery,

oldestDirtyLSN is no longer NULL.

C. TPC-E Evaluation

1) Sustained Throughput: Fig. 13 shows the sustained

throughput, for TPC-E, after restarting from a shutdown. All the

SSD-restart schemes, including MMR, have a sustained

throughput very close to that of SSDBP. The reason why MMR

did not lose significant performance is due to the fact that TPC-E

is not update intensive. So the additional traffic to the SSD, to

flush the updates to the SSD buffer table, was less, compared

with the TPC-C case. For example, with MMR+DW, the SSD

busy time increased only by 5% (contrast 95%-79%=16% in the

TPC-C case).

2) Peak-to-peak Interval: Next we turn our attention to the

peak-to-peak intervals of the SSD-restart schemes, for the case of

restarting after a shutdown and after a crash, shown in Fig. 14

and Fig. 15, respectively.

In the shutdown case (Fig. 14), all the SSD-restart schemes

have a similar speedup over SSDBP. With the DW policy, the

speedup is 3.8X. With the LC policy, the speedup is around 3.4X.

In the crash case (Fig. 15), MMR achieved a higher

improvement than LBR and LVR. In particular, with the DW

policy, MMR had a 3.5X speedup (over SSDBP), and LVR had a

2.4X speedup; with the LC policy, MMR had a 3.2X speedup,

and LVR had a 2.4X speedup. In both cases, LBR had a speedup

between MMR and LVR. The reason why LVR had a worse

speedup is that for crash recovery, LVR had a constant overhead

of scanning through the SSD buffer pool (to do deep verification

as discussed in Section III-D4). In our experiments, LVR spent

380 seconds on the deep verification.

D. Discussion

Each of the three SSD-restart designs has unique

characteristics. The MMR method could significantly lower the

forward-processing performance if the SSD is a system

bottleneck (as can happen for update-intensive workloads such as

TPC-C). MMR is, however, simpler to implement than the other

two schemes because there is no need to generate new types of

log records (as is required for LBR), or require a separate thread

12

to periodically flush the contents in the SSD buffer table (as is

required for LVR).

If it is certain that the server only will run read-heavy

workloads, MMR may be the best option. Otherwise, both MMR

and the LBR designs can hinder the sustained peak performance

for different reasons; MMR has to flush every update to the SSD

buffer table, and LBR has to flush certain log records to the log

disk. But, as we have shown in our experiments the MMR

scheme has a bigger (negative) impact on the sustained peak

performance (compared to LBR) as it has to flush more often

than LBR. We have also seen that both LBR and LVR have a

very small impact on the sustained peak performance.

The LBR and LVR methods use different locations for the

persistent storage when hardening the contents of the SSD buffer

table. The LBR design logs the updates made to the SSD buffer

table in the transactional log (which is in general located in

HDDs). The LVR design, on the other hand, flushes the SSD

buffer table to an SSD-resident file. Depending on which one is a

potential system bottleneck, one design could achieve better

throughput than the other (in our all experiments, the

performance loss caused by LBR and LVR was within 5%).

However, overall we believe that the LVR method is better

than LBR for the following reasons: First, LBR may require a

larger log space when processing update-intensive workloads, as

it generates log records whenever pages are written to the SSD

buffer pool (e.g., on the TPC-C database with LC, the log-space

size used by LBR and LVR is 89.6GB and 70GB, respectively).

Second, LVR is the only design with the flexibility that

hardening the SSD buffer table does not require synchronization

with regular forward processing, which in turn implies that it has

a smaller impact on the sustained peak performance. In additions,

with LVR one can control how frequently the SSD buffer table is

hardened, thereby providing a controlled way of putting

additional load on the SSD I/O subsystem.

Finally, supporting multiple databases and recovering them in

parallel is challenging with LBR. In SQL Server 2012 different

databases have different transactional logs, and the checkpoints

and recovery of different databases is performed independently.

LBR may require the recovery of multiple databases to be

synchronized. As a comparison, it is relatively easy to make

MMR and LVR support parallel recovery of multiple databases.

V. RELATED WORK

Using flash SSDs to extend the buffer pool of a DBMS has

been a topic of active research interest (e.g., [2], [6], [7], [9],

[14]), and commercial appliance design such as Oracle Exadata

[19] and Teradata Virtual Storage System [20]. This paper

focuses on the DW and LC designs proposed in [7], which have

been shown to be the leading methods.

Flash SSD has also been targeted for other uses in a database

management system, including using the SSD to permanently

store some of the data in the database (e.g., [5] , [8], [13]), storing

database transactional logs [16], and as a second level file cache

[1]. The SIGMOD ’11 tutorial by Koltsidas and Viglas [15]

provides a nice recent overview of data management techniques

that leverage flash memory.

Restarting from the SSD is a relatively new topic of research,

and the first paper on this topic was published by Bhattacharjee et

al.[3]. Their proposed technique is the MMR technique that we

evaluate in this paper.

VI. CONCLUSIONS

This paper evaluates three alternative schemes that leverage

the non-volatile feature of flash SSDs by reusing the SSD buffer

pool pages after a server restart. These three schemes include the

previously proposed MMR method, and two new methods, LBR

and LVR, that we propose in this paper. Each of the three SSD-

restart designs was implemented on top of both the previously

proposed state-of-the-art methods, DW and LC, buffer pool

extension designs. We have carried out a thorough investigation

of these methods using both a read-intensive workload (TPC-E)

and update-intensive workload (TPC-C). Our results point to the

combination of DW and LVR as a leading candidate to enable

fast restart from SSD.

REFERENCES

[1] R. Bitar, “Deploying Hybrid Storage Pools with Sun Flash Technology

and the Solaris ZFS File System,” in Sun BluePrints Online, 2008.
[2] B. Bhattacharjee, M. Canim, C. A. Lang, G. Mihaila, and K. A. Ross,

“Storage Class Memory Aware Data Management,” IEEE Data

Engineering Bulletin, 33(4), 2010.
[3] B. Bhattacharjee, C. Lang, G. A. Mihaila, K. A. Ross, and M.

Banikazemi, “Enhancing Recovery Using an SSD Buffer Pool

Extension,” in DaMoN, 2011.
[4] P. Bernstein and E. Newcomer, Principles of Transaction Processing,

2nd ed., Morgan-Kauffman Publishers. 2009.

[5] M. Canim, B. Bhattacharjee, G. A. Mihaila, C. A. Lang, and K. A.
Ross, “An Object Placement Advisor for DB2 Using Solid State

Storage,” PVLDB, 2009.

[6] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A.

Lang, “SSD Buǟerpool Extensions for Database Systems,” in VLDB,
2010.

[7] J. Do, D. Zhang, J. M. Patel, D. J. DeWitt, J. F. Naughton, and A.

Halverson, “Turbocharging DBMS Buffer Pool Using SSDs,” in
SIGMOD, 2011.

[8] J. Do, J. M. Patel, “Join Processing for Flash SSDs: Remembering Past

Lessons,” in DaMoN, 2009.
[9] J. Gray and A. Reuter, Chapter 12: Advanced Transaction Manager

Topics, In Transaction Processing: Concepts and Techniques, Morgan

Kaufmann Publishers, 1993.
[10] L. Holloway, “Chapter 4: Extending the Buffer Pool with a Solid State

Disk,” in Adapting Database Storage for New Hardware, Ph.D. thesis,

University of Wisconsin-Madison, 2009.
[11] Iometer. http://www.iometer.org

[12] S.-H. Kim, D. Jung, J.-S. Kim, and S. Maeng, “HeteroDrive: Re-

shaping the Storage Access Pattern of OLTP workload using SSD,”
in IWSSPS, 2009.

[13] I. Koltsidas and S. Viglas, “Flashing Up the Storage Layer,” PVLDB,

2008.
[14] I. Koltsidas and S. Viglas, “Designing a Flash-Aware Two-Level

Cache,” in ADBIS, 2011.

[15] I. Koltsidas and S. Viglas, “Data Management Over Flash Memory,”
Tutorial , SIGMOD, 2011.

[16] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim, “A Case for

Flash Memory SSD in Enterprise Database Applications,” in SIGMOD,
2008.

[17] Microsoft SQL Server 2012. http://www.microsoft.com/sqlserver/

[18] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: A Transaction Recovery Method Supporting Fine-Granularity

Locking and Partial Rollbacks Using Write-Ahead Logging,” in TODS

17(1), March 1992.
[19] Oracle Exadata.

http://www.oracle.com/us/products/database/exadata

[20] Teradata. Virtual Storage.
http://www.teradata.com/t/ brochures/Teradata-Virtual-Storage-eb5944

[21] TPC Benchmark C (TPC-C). http://www.tpc.org/tpcc.

[22] TPC Benchmark E (TPC-E). http://www.tpc.org/tpce.
[23] Appendix to the paper. http://pages.cs.wisc.edu/~jae/appendix.pdf

