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ABSTRACT
In recent years, Massively Parallel Processors have increasingly
been used to manage and query vast amounts of data. Dramatic
performance improvements are achieved through distributed exe-
cution of queries across many nodes. Query optimization for such
system is a challenging and important problem.

In this paper we describe the Query Optimizer inside the SQL
Server Parallel Data Warehouse product (PDW QO). We leverage
existing QO technology in Microsoft SQL Server to implement a
cost-based optimizer for distributed query execution. By properly
abstracting metadata we can readily reuse existing logic for query
simplification, space exploration and cardinality estimation. Un-
like earlier approaches that simply parallelize the best serial plan,
our optimizer considers a rich space of execution alternatives, and
picks one based on a cost-model for the distributed execution envi-
ronment. The result is a high-quality, effective query optimizer for
distributed query processing in an MPP.

Categories and Subject Descriptors
H.2.4 [Database Management]: Parallel databases; H.2.4 [Database
Management]: Query processing

Keywords
Query Optimization

1. INTRODUCTION
1.1 Overview of SQL Server PDW

One of the major trends in recent years has been the wide adop-
tion of Massively Parallel Processing (MPP) systems, i.e., distributed
systems consisting of multiple independent nodes connected by a
network. MPP systems are typically used as data warehouses, that
is they are used to manage and query vast amounts of data. Mi-
crosoft SQL Server Parallel Data Warehouse [9, 10] is a shared-

∗PDW is short for Parallel Data Warehouse.
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Figure 1: Microsoft SQL Server PDW.

nothing parallel database appliance and is one example of an MPP
system.

SQL Server PDW comes in a number of hardware configura-
tions, with the necessary software pre-installed and ready to use. It
has a control node that manages a number of compute nodes (see
Figure 1). The control node provides the external interface to the
appliance, and query requests flow through it. The control node
is responsible for query parsing, creating a distributed execution
plan, issuing plan steps to the compute nodes, tracking the execu-
tion steps of the plan, and assembling the individual pieces of the
final results into the single result set that is returned to the user.
Compute nodes provide the data storage and the query processing
backbone of the appliance. The control and compute nodes each
have a single instance of SQL Server RDBMS running on them.
User data is stored in tables that are hash-partitioned or replicated
tables across the SQL Server instances on the compute nodes.

To execute a query, the control node transforms the user query
into a distributed execution plan (called DSQL plan) that consists
of a sequence of operations (called DSQL Operations). At a high-
level, every DSQL plan is composed of two types of operations: (1)
SQL operations, which are SQL statements to be executed against
the underlying compute nodes’ DBMS instances, and (2) DMS op-
erations1 which are operations to transfer data between DBMS in-
stances on different nodes.

1DMS is short for Data Movement Service.
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1.2 Query Optimization in PDW
Queries executed in MPP environments tend to be complex –

involving many joins, nested sub-queries and aggregations – and
are usually long-running and resource-intensive. The goal of the
query optimizer is to find the best execution plan for a given query,
which is usually accomplished by examining a large space of pos-
sible execution plans and comparing these plans according to their
estimated execution costs.

Developing an industrial-strength query optimizer from scratch
is a major undertaking. Enumerating execution alternatives ade-
quately requires an understanding of relational algebra and its prop-
erties, as well as deriving and identifying desirable execution plans.
Effective plan selection requires careful modeling of data distribu-
tions and cost estimation. For a commercial product, time to market
is also a critical dimension to consider. Rather than starting from
scratch, the PDW query optimizer reuses the technology developed
for SQL Server, which has been tuned and tested over a number
of releases. This allowed us to craft in a short time a query opti-
mizer for parallel queries that is rich in functionality and produces
high-quality plans.

PDW invokes the SQL Server QO against a “shell database” to
obtain a compact representation of the optimization search space
called a MEMO [5, 6]. This search space is then augmented with sta-
tistical information on the distribution of data in the appliance to
find a parallel execution plan for the query. , taking into consider-
ation the available statistics and the actual data distribution in the
appliance.

The main idea of PDW QO can be summarized as follows:
1. We store the metadata of the distributed tables in a “shell

database” on a single SQL Server instance. The “shell database”
provides the “single system image” of the data in the appli-
ance. Importantly, it also stores aggregated statistical infor-
mation on the user data.

2. Using the shell database, we use the existing compilation
stack of SQL Server to parse a given query, and generate
and export the space of execution alternatives (MEMO).

3. We traverse the space of execution alternatives to introduce
data movement operations, and make a cost-based decision
on the best execution plan for the distributed environment.

The rest of the paper is organized as follows. We first give an
overview of the Microsoft SQL Server PDW architecture in Section
2. We provide detailed discussion of PDW QO implementation in
Section 3. Section 4 contains detailed query example illustrating
the flow of query optimization. Finally, we conclude in Section 5.

2. MICROSOFT SQL SERVER PDW
ARCHITECTURE OVERVIEW

2.1 Appliance
The PDW appliance is composed of hardware and software ar-

chitected to function together as one “box.” Multiple servers are
used to implement scale-out query processing in a shared-nothing
fashion.

Users can only access the box through the user interface of the
appliance. Industry standard hardware is used for servers, network-
ing components and storage arrays. This approach allows cost ef-
fective and incremental growth of the appliance by adding extra
servers or storage. Additionally, as the appliance grows over time
the server components can be upgraded or individually replaced
with newer generations of more powerful CPUs, memory, storage,
etc.

There are two distinct types of nodes that implement the query
processing functionality (see Figure 1).

1. Control Node. The control node manages the distribution
of query execution across the compute nodes, accepts client
connections to the PDW appliance and manages client au-
thentication. In addition to containing a SQL Server instance,
the control node contains additional software to support the
distributed architecture of the PDW. This includes the en-
gine that coordinates the data warehousing functions that are
specific to processing parallel queries, stores appliance-wide
metadata and configuration data, and manages appliance and
database authentication and authorization. The control node
also manages the Data Movement Service (DMS) (described
in Section 2.3) that runs on the appliance nodes and is the
communication layer for transfering data between the nodes
in the appliance. A user can connect to the PDW control node
using a variety of client access tools using the drivers with
connection types, such as: ODBC, OLE DB, ADO.NET.

2. Compute Nodes. Each compute node is the host for a sin-
gle SQL Server instance. It also runs a DMS process for
communication and data transfer with the other nodes in the
appliance. Each compute node stores a portion of the user
data.

Tables in a PDW appliance can either be

1. replicated on each compute node in the appliance, or

2. hash-partitioned on a specified column(s) across the compute
nodes.

2.2 Shell Database
A “shell database” is a SQL Server database that defines all

metadata and statistics about tables, but does not contain any user
data. From the point of view of compilation, authentication, autho-
rization and query optimization, a shell database is undistinguish-
able from one that contains actual data. Shell databases are used by
SQL Server for testing and debugging of compilation issues with-
out having to copy large databases.

For PDW, a shell database residing on the SQL Server instance
at the control node is used to store the metadata for the user tables
partitioned across the compute nodes. It provides all the informa-
tion needed to compile and generate a space of execution alterna-
tives for queries. In addition to table metadata, we also store in
this database all information regarding users and privileges, so that
compilation can check for security and access rights. This enables
PDW to provide the same security model as SQL Server, at no extra
cost.

The shell database also contains global statistics for all the ta-
bles in the appliance. To compute global statistics, local statistics
are first computed on each node via the standard SQL Server mech-
anisms, and are then merged together to derive global statistics..

2.3 Data Movement
The Data Movement Service (DMS) is responsible for moving

data between all the nodes on the appliance. Once instance of DMS
runs on each of the control and compute nodes. Certain steps of a
user query may require intermediate result sets to be moved from
one compute node to another. In addition, sometimes intermediate
result sets from one or more compute nodes must be moved to the
control node for final aggregations and sorting prior to returning
the result set to the client. PDW utilizes temporary (temp) tables
on the compute and control nodes as necessary to move data or
store intermediate result sets. In some cases, queries can be written
that generate no temp tables and results can be streamed from the
compute nodes directly back to the client that issued the query –
such queries will not involve DMS.
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2.4 The DSQL Plan and its Execution
Given a user-specified SQL query, the PDW engine is responsi-

ble for creating a parallel execution plan (known as a DSQL plan).
A DSQL plan may include the following types of operations:

• SQL Operations that are executed directly on the SQL Server
DBMS instances on one or more compute nodes.

• DMS Operations which move data among the nodes in PDW
for further processing, e.g. moving intermediate result sets
from one compute node to another.

• Temp table operations that set up staging tables for further
processing.

• Return operations which push data back to the client.
Query plans are executed serially, one step at a time. However,
a single step typically involves parallel operations across multiple
compute nodes.
DSQL Plan Example: Using the TPC-H schema as an exam-
ple, let’s assume that the Customer table is hash-partitioned on
c_custkey, and the Orders table is hash-partitioned on o_orderkey
and we want to perform the following join between these two ta-
bles.

SELECT c_custkey,
o_orderdate

FROM Orders, Customer
WHERE o_custkey = c_custkey AND o_totalprice > 100

The table partitioning is not compatible with the join since Or-
ders is not partitioned on o_custkey). Thus, a data movement op-
eration is required in order to evaluate the query. The optimizer
on the control node may produce a DSQL plan consisting of the
following two steps:

1. DMS Operation that repartitions data in the Orders table on
o_custkey in preparation for the join.

2. Return SQL Operation that selects tuples for the final result
set from each compute node and returns them back to the
client.

Once the plan has been generated, the Engine service executes the
plan by walking the list of plan steps and distributing the steps one-
by-one to the compute nodes.
Step 1: DMS Operation: In the example above, the first step in
the DSQL plan is a DMS operation that repartitions Orders data on
o_custkey. The DMS operation specifies the (1) SQL statement re-
quired to extract the source data, (2) the tuple routing policy (e.g.,
replicate or hash-partition on a particular column), and (3) the name
of a (temporary) destination table. The Engine service then begins
broadcasting the DMS operation from the control node to the DMS
instance on each node. Upon receiving the DMS message, the DMS
instance on each compute node begins execution of the data move-
ment operation by issuing the SQL statement below:

SELECT o_custkey,
o_orderdate

FROM Orders
WHERE o_totalprice > 100

against the local SQL Server instance. Each DMS instance reads
the result tuples out of the local SQL Server instance, routes the
tuples to the appropriate DMS process by hashing on o_custkey,
and also inserts the tuples it receives from other DMS instances
into the specified local destination table (Temp_Table in this exam-
ple). Once all of the tuples from the source SQL statement have
been inserted into their respective destinations the DMS operation
is complete.

PDW Engine process
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Query Transform

T-SQL generator
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Query optimizer
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PDW execution
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Figure 2: Overview of query optimization in PDW.

Step 2: SQL Operation: After the DMS operation has completed,
the Engine service moves on to the second step in the plan, which
is the SQL operation that is used to pull the result tuples from each
compute node. To perform this operation, the Engine service ob-
tains a connection to the SQL Server instance on each compute
node and issues a specified SQL statement. In this case, the SQL
statement that will be executed is:

SELECT c.c_custkey,
tmp.o_orderdate

FROM Customer c,
Temp_Table tmp

WHERE c.c_custkey = tmp.o_custkey

To complete the request, the Engine service reads the result tuples
from each compute node, packages them into the final result, and
sends them back to the client. The query execution is now com-
plete. From the client’s perspective, it appears as if all of the data
was stored and all of the computation took place in a single SQL
Server instance on the control node.

2.5 Cost-Based Query Optimization in PDW
Figure 2 provides the high-level data flow for PDW query opti-

mization. The key observation that forms the basis of PDW QO is
that the problem of a) algebrizing input queries into operator trees,
and b) the logical (as opposed to physical, or partition-dependent)
exploration done on operator trees to find plan alternatives is the
same for PDW as it is for a single SQL server instance. We de-
scribe each of the QO components and their functionality below:

1. PDW Parser: This component is responsible for parsing the
input query string and creating an abstract syntax tree (AST)
structure that can be validated against PDW syntax rules.
Some PDW queries may also need a few basic transforma-
tions before they are ready to be sent to SQL Server against
the shell database.

2. SQL Server Compilation: After validation by the PDW
parser, the query is passed to SQL Server for compilation
against the shell database. The SQL Server optimizer per-
forms the following functions:

(a) Simplification of the input operator tree into a normal-
ized form. This is inserted as the initial plan into the
MEMO [5, 6] data structure, which will hold the space of
alternative plans for the query.
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Figure 3: Parallel query optimization flow: (a) input query, (b) logical query tree, (c) augmented MEMO, (d) best query plan, (e)
final DSQL plan.

(b) Logical transformations on the plans in the MEMO data
structure to augment the set of choices. These are based
on relational algebra rules. For instance, all equivalent
join orders are generated in this stage.

(c) Estimation of the size of intermediate results for each of
the execution alternatives. These estimations are based
on the size of base tables and statistics on the column
values.

(d) The implementation phase which adds physical oper-
ator (algorithms) choices into the search space. The
optimizer costs them and prunes the plans that do not
meet established lower bounds.

(e) Extraction of the optimal execution plan.

While the output of the SQL server optimizer is an “opti-
mal” execution plan, the best serial plan (i.e., single-node
execution plan) will not produce the best distributed execu-
tion plan. We elaborate on this later in this section.

PDW does not take the best plan obtained by the SQL Server
optimizer; rather the PDW QO will consume the entire space
of alternatives generated by the SQL QO.

3. XML Generator: This component takes the search space
generated by SQL Server optimizer represented in the MEMO

data structure as its input and encodes the information as
XML.

4. PDW Query Optimizer: The PDW query optimizer is the
consumer of the search space output from the XML gener-
ator. There is a memo parser on the PDW side which is re-
sponsible for constructing the memo data structure for the
PDW query optimizer. Once the memo data structure for
the PDW side is constructed, the PDW optimizer performs
bottom-up optimization (see Section 3.2) with the help of
the PDW cost model. The responsibilities of the PDW query
optimizer include:

(a) Enumeration of distributed execution plans by system-
atically adding appropriate data movement strategies
into the search space.

(b) Costing the alternative plans generated using the PDW
cost model.

(c) Choosing the optimal (minimal cost) distributed execu-
tion plan.

Once optimization process is completed, the DSQL generator com-
ponent constructs the query plan for distributed execution of the
query.

Example:
Consider the following SQL query:

SELECT *
FROM CUSTOMER C, ORDERS O
WHERE C.C_CUSTKEY = O.O_CUSTKEY
AND O.O_TOTALPRICE > 1000

Figure 3 visually depicts the flow of parallel query optimization for
the above query. We first parse the input query (Figure 3(a)) and
transform it into a tree of logical operators (Figure 3(b)). Tradi-
tional query optimization is performed producing a MEMO. The MEMO

consists of two mutually recursive data structures, called groups
and groupExpressions. A group represents all equivalent operator
trees producing the same output. To reduce memory requirements,
a group does not explicitly enumerate all its operator trees. Instead,
it implicitly represents all the operator trees by using groupExpressions.
A groupExpression is an operator having other groups (rather than
other operators) as children. As an example, consider Figure 3(c),
which shows a MEMO for the query example above (logical opera-
tors are shaded and physical operators have white background). In
the figure, group 1 represents all equivalent expressions that return
the contents of table Customer (or C, for short). Some operators
in group 1 are logical (e.g., Get C), and some are physical (e.g.,
Table Scan, which reads the contents of C from the primary index
or heap, and Sorted Index Scan, which does it from an existing sec-
ondary index). In turn, group 4 contains all the equivalent expres-
sions for C �� O. Note that groupExpression 4.1 (i.e., Join(1,3)),
represents all operator trees whose root is Join, first child belongs
to group 1, and second child belongs to group 3. In this way, a MEMO

compactly represents a potentially very large number of operator
trees. Children of physical groupExpressions point to the most ef-
ficient groupExpression in the corresponding groups. For instance,
groupExpression 4.6 represents a hash join operator whose left-
hand-child is the fourth groupExpression in group 1 and whose
right-hand-child is the third groupExpression in group 2. In addi-
tion to enabling memoization (a variant of dynamic programming),
a MEMO provides duplicate detection of operator trees, cost man-
agement, and other supporting infrastructure needed during query
optimization. Additional details on the organization of the MEMO

structure can be found in the literature [5, 6].
Once the memo from SQL Server (i.e. the serial MEMO)̃ has been

generated, it is augmented to additionally consider parallelism (see
Figure 3(c)). The PDW optimizer then introduces new data move-
ment groups and operations into the MEMO based on the underly-
ing data distributions. For example, see groups 5 and 6 in the
Figure 3(c) . Group 5, represents the data movement of the out-
put of group 1 (i.e., the tuples from C). Assuming, C and O are
distribution-incompatible, this operation would be considered by
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the parallel optimizer as one of the options in order to make both
C and O partition-compatible to perform the join C �� O. Group
6, on the other hand, represents the data movement of the other in-
put to the join, namely O. Like relational operations, logical data
movement operations may have a number of physical implementa-
tions, such as Shuffle (re-partition of data on a column(s)), Replica-
tion, and so on. The final execution plan, which consists of a tree
of physical operators, is extracted from the MEMO (shown in Fig-
ure 3(d)). THis plan is then transformed into an executable DSQL
plan that will be run in the appliance (shown in Figure 3(e)).

Why Parallelizing The Best Serial Plan Is Not Enough
The optimization objectives for PDW and SQL Server are different
[8]. The SQL Server optimizer is unaware of the partitioning of
data, while PDW has the additional task of inserting and costing
data movement operations to obtain a correct and efficient parallel
plan. However, the problem of arriving at a logical search space is
common to both, for the most part. Hence we export the logical
search space from the SQL server process into PDW for optimiza-
tion based on PDW objectives.

This is best illustrated with an example. Consider the TPCH
database, with the Customer, Orders and Lineitem tables parti-
tioned on custkey, orderkey, and orderkey, respectively. Consider a
query that performs a join between these three tables on custkey and
orderkey. The best serial plan may produce the following join or-
der: Customer, Orders, Lineitem, in increasing order of table size.
However, a better parallel plan may be obtained by choosing the
following join order: Orders, Lineitem, Customer, i.e. join Orders
and Lineitem first and then shuffle (i.e., redistribute) the result on
custkey. This plan may be better due to the co-location of Orders
and Lineitem.

3. IMPLEMENTATION OF PDW QO
Although the conceptual idea behind PDW QO is relatively sim-

ple, there were a number of technical challenges to address. We
discuss them in detail in this section.

3.1 Changes to SQL Server
A few changes are needed in SQL Server to reuse its logic for

PDW optimization.
The first change is to support exporting the optimizer search

space. We defined a new compilation entry point to request the
optimizer MEMO, in a way similar to the “showplan XML” function-
ality already available in SQL Server. This new entry point also
triggers the use of any PDW-specific logic in the SQL Server com-
pilation stack. When the PDW-compilation is requested, the output
from SQL Server is an XML representation of the MEMO data struc-
ture.

A second change is to extend the query surface to support all
constructs of PDW. The goal for PDW is to be fully compatible
with SQL Server. So this extension is limited to a handful of query
hints for specific distributed execution strategies.

The third change is to expand the optimizer search space to in-
clude some alternatives that are relevant for distributed query ex-
ecution, especially around collocation of joins and unions. The
transformation-based architecture of the query optimizer in SQL
Server allows implementing these extensions without major changes
to the framework.

For very large search spaces, the SQL Server optimizer uses a
timeout mechanism and does not generate all possible plans. In
those cases the initial execution alternatives placed in the MEMO have
a big influence on the space considered. For PDW optimization,

we “seed” the MEMO with execution plans that consider distribution
information of tables, for collocated operations.

3.2 Plan Enumeration
The search space of possible plans is huge and by introduc-

ing data movement (DMS) operations we increase it even further.
Naïve enumeration is not likely to be successful for any but the
simplest of queries. In this section, we describe the bottom-up enu-
meration strategy in the PDW optimizer. While our current imple-
mentation employs a bottom-up search strategy, a top-down enu-
meration technique is equally applicable to the PDW QO design.

Steps 5-7 in Figure 4 depict the pseudo-code for the bottom-up
search strategy. A bottom-up optimizer starts by optimizing the
smallest expressions in the query, and then uses this information to
progressively optimize larger expressions until the optimal phys-
ical plan for the full query is found. Bottom-up optimizers pay
special attention to physical properties that affect the ability to gen-
erate the optimal plan. Interesting properties in the PDW query
optimizer represent an extension of the notion of interesting orders
introduced in System R [3]. For example, a subplan that returns re-
sults distributed on a certain column may be preferable to a cheaper
alternative, because later in the plan this distribution can be lever-
aged to obtain a globally optimum solution. Specifically, the PDW
query optimizer considers the following columns to be interesting
with respect to data movements: (a) columns referenced in equality
join predicates, and (b) group-by columns. Join columns are in-
teresting because they make local and directed joins possible, and
group-by columns are interesting because aggregations can be done
locally at each node and the results unioned together, without hav-
ing to do local / global processing.

3.3 Cost Model
To evaluate the performance of a specific plan, we use a cost

model that costs data movement operations. Despite the robustness
that costing relational operators would give to the cost model, cost-
ing DMS operations is a good start for developing a high quality
cost based optimizer:

• Costing data movement operations is a subset of the overall
“complete” cost model for plans involving both data move-
ment and SQL relational operations. Thus, the scope is smaller
and more manageable. The development, testing and debug-
ging of the cost model is less complex compared to the mixed
cost model involving relational operations.

• Data movement processing times tend to dominate queries
overall execution times in PDW due to materializing data
to temp tables. Thus, optimizing for data movements is ex-
pected to produce good quality plans for a broad set of queries.

• There is no equivalent to data movement operations inside
SQL Server, thus we cannot rely on SQL Server optimizer to
generate the costs for these operations.

3.3.1 Cost Model Assumptions
Building a cost model from scratch is a challenging task. Our

current version of the cost model strives for simplicity while trying
to ensure high quality. The scope of the current version of the cost
model is to only cost DMS operations in terms of response time.
With this purpose in mind the following assumptions hold:

• Absence of independent parallelism. The cost model as-
sumes a sequential execution of the DSQL steps.

• Absence of pipelined parallelism between DSQL steps.
Two steps in a consumer-producer relationship are not ex-
ecuted concurrently; intermediate results are always materi-
alized.
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PDWOptimizer ()
01 Parse the MEMO XML from SQL server into the PDW MEMO object.
02 Apply MEMO pre-processor rules (bottom-up).

Example: Fix cardinality estimates of partial aggregates based on PDW topology.
03 Merge equivalent group expressions from the perspective of PDW within the groups (bottom up).
04 Derive interesting properties of groups (top-down).

/*** BOTTOM-UP ENUMERATION ***/
05 For each group in the MEMO, in bottom-up order, do the following:
06 Enumeration step:

06.i Enumerate PDW optimization options by considering all possible inputs from child groups.
If it’s a base group, add a Get operation.
Apply heuristic pruning.

06.ii Cost based pruning:

As PDW group expressions are added, keep only the overall best option
and the best option per each interesting property.
Do pruning every time a new PDW group expression is added into the MEMO.
The maximum cardinality of the set of PDW group expressions in
a group is (# of interesting properties + 1). //one is added to account for overall best.

07 Enforcer step:

Add PDW move group expressions based on interesting properties in the current group.
Apply cost-based pruning similar to step 06.ii above.

/*** END BOTTOM-UP ENUMERATION ***/
08 Extract the best overall plan by starting at the best plan in the root group and going

down the memo to obtain the optimal plan tree.
09 Apply post-optimization rules on the optimal plan tree.
10 Perform DSQL-generation by traversing the optimal plan tree bottom-up.
11 Apply post-DSQL-generation rules on the DSQL plan.
12 Return the DSQL plan to the engine for execution.

Figure 4: Pseudo-code for PDW Optimizer (component 4 in Figure 2).

• Isolation. When costing a query, we assume it runs in isola-
tion.

• Homogeneity. Homogeneous hardware across all nodes in
the appliance (one topology).

• Uniformity. Uniform distribution of data across nodes. When
costing an operator which is cloned and executed in multiple
independent nodes, we could compute the cost of an opera-
tor as max1≤i≤N (C[i]) where N is the number of nodes, and
each component of C its execution cost on a particular node.
With the uniform and homogeneity assumptions, the compo-
nents of the cost vector C are assumed to be identical, thus
simplifying the cost model in the sense that only one node
needs to be considered.

3.3.2 Types of DMS Operations
Before we present the details of our cost model, we first discuss

the various physical data movement operations in PDW. There are
7 data movement operations:

1. Shuffle Move (many-to-many). Rows are moved from each
compute node to target table based on a hash of the value in
the specified distribution column.

2. Partition Move (many-to-one). Rows are moved from each
compute node to the target table on the target node (typically
the control node but this is not a requirement).

3. Control-Node Move (From the control node to the compute
nodes). A table in the control node is replicated to all com-
pute nodes.

4. Broadcast Move. Rows are moved from each compute node
to the target table on all compute nodes.

5. Trim Move. Trim move is initiated against a replicated table
on all compute nodes where the destination is to a distributed
table on its own nodes. Hashing will take place so that only
rows that this node is responsible for will be kept.

6. Replicated broadcast. A table which is only in one compute
node it is replicated via a broadcast move.
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Figure 5: A DMS operator.

7. Remote copy to single node. Can be either a remote copy of
a replicated table (from control node or from compute node)
or, a Remote copy of a distributed table.

Each of the DMS operations defined above is implemented by a
common runtime operator, the DMS operator. The cost of the DMS
operator will be different depending on the operation being imple-
mented.

3.3.3 Cost of a DMS operator
Figure 5, shows the basic structure of a DMS operator. We can

envision a DMS operator as two components with separate func-
tionalities that we name the source, and the target. The source of
a DMS operator is the “sending side” and can be broken into the
following two cost sub-components:

• Creader: Read tuples from the query executed against SQL
Server and packing them into a buffer.

• Cnetwork: Send the data buffers over the network.

772



(a) Physical 

Operator Tree

(b) QRel RelOp 

Tree
(c) DSQL Plan

Shuffle: SELECT ...
Return: SELECT ...

(d) DSQL Formatted Plan

OnOperation: 

CREATE TABLE temp ...

Shuffle Shuffle

Shuffle

Figure 6: DSQL Generation.

The data is sent asynchronously over the network; therefore we
can define the cost of the source component as the most expensive
of its components: Csource = max(Creader ,Cnetwork).

The target in a DMS operator is the “receiving side” and, is also
broken into two cost sub-components:

• Cwriter: Unpack the tuples from the buffers sent by the send-
ing process, and prepare buffers for insertion into a tempo-
rary table.

• CSQLBlkCpy : Bulk copy operation for insertion of the data
buffers into a SQL Server temporary table.

The bulk insert into the temporary table is done asynchronously,
so similarly to the source component, the cost of the target can be
defined as: Ctarget = max(Cwriter , CSQLBulkCpy).

The source and the target of a DMS operator run in parallel on
each node. Therefore, we define the cost of a DMS operation as
follows: CDMS = max(Csource, Ctarget).

Costing of an Individual Component
Theoretically, the more complex the model the more accurate the
estimates should be. However, it has also been proven that, the
more sophisticated the cost model is, the more sensitive it is to
slight changes in data and statistics [7]. Furthermore, it becomes
more difficult to debug and maintain the cost model over time. Our
current version of the cost model costs each individual component
based on the number of raw bytes processed: CX = B * λ, where B
is the number of raw bytes and λ is the cost per byte for the specific
component (CX ).

The constant λ is calculated via targeted performance tests af-
ter a meticulous instrumentation of the source code. We call the
process of defining the value of λ for each cost component cost
calibration. The results of our cost calibration showed that there
are differences in the value of λ depending on the number of rows,
number of columns or column type. However, the differences ob-
served were not significant enough to justify stepping up the com-
plexity of the cost model. Therefore, the value of λ is considered to
be constant regardless of these parameters. Each cost component
has its own constant value of λ. Creader, however, was one excep-
tion and required two constants, denoted as λhash and λdirect, to
account for the extra overhead that hashing has for some data move
operations e.g. Shuffle or Trim.

The number of bytes B to be processed by each individual cost
component depends on the distribution properties of the input and
output streams. Let Y denote global cardinality, and w – the width
of the row (both values are provided by the statistics exported in the
MEMO). Let N denote the number of nodes in the appliance. Then,
under the uniformity assumption, we can compute B as:

• ( Y∗w
N ) for distributed data streams, and

• (Y * w) for replicated data streams.

3.4 DSQL Generation
Finally, once the query execution plan is selected by the PDW

query optimizer, it must be translated to DSQL format to be able to
run it on the actual compute nodes. Unlike other MPP systems, e.g.,
GreenPlum [2], instead of sending an operator tree to each com-
pute node, SQL Server PDW sends a SQL statement to the com-
pute nodes. The SQL statements are executed against the underly-
ing compute nodes’ standard DBMS instances, and data movement
operations are used to transfer data between DBMS instances on
different nodes. This is a similar approach to AsterData [1].

Performing DSQL generation requires taking an operator tree
and translating it back to SQL. We employ the QRel programming
framework [4], which encapsulates the knowledge of mapping re-
lational trees to query statements. The process is depicted in Figure
6. A physical operator tree produced by the PDW query optimizer
is first converted into a RelOp tree [4], which has structure similar
to SQL server algebrizer output tree. RelOp tree is then converted
into a PIMOD AST by the QRel library. Finally, the PIMOD script
generator generates T-SQL string from the resulting AST. For more
details on this process, we refer the reader to [4].

4. QUERY OPTIMIZATION EXAMPLE
Figure 7 is an example of the parallel plan generated by PDW

for Q20 in TPC-H. The figure also shows the DSQL plan genera-
tion output for each section of the parallel query plan, separated by
a red line in the Figure. For readability we don’t show the tempo-
rary tables in the query plan, however, each data move operation is
materializing the output of each DSQL step; in other words, DSQL
steps are not pipelined.

Q20 is interesting from the point of view that exercises key fea-
tures in query optimization like: sub-query removal, sub-query into
join transformation, join transitivity closure detection etc.

• DSQL steps 0 and 1. The semi-join between lineitem and
part – transformed into a join and a group by on p_parkey –
is the result of de-correlating the two most inner sub-queries
(SQ2 and SQ3), transforming them into joins, and detect-
ing the transitivity closure between ps_partsupp, part and
lineitem; this strategy allows the early filtering of lineitem,
by joining it with part. Due to the high selectivity predicate
on part, a broadcast join is the preferred option in this case
(DSQL step 0); a shuffle of lineitem is also considered but
results into a more expensive strategy. After the broadcast
of part, we shuffle the output of the join between part and
lineitem (DSQL step 1) on l_partkey to compute the group by
aggregation (sum(l_quantity)) in a distributed manner. Note
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that the cost model opts for a local-global transformation
of the group by aggregation because is cheaper from a data
move point of view due to the reduction of the data set per-
formed by the local group by.

• DSQL step 2. The global aggregation sum(l_quantity) takes
place and we perform the semi-join between partsupp and
part. Finally, we perform a shuffle of the result set on ps_suppkey
to perform a distributed group by to execute the final semi-
join between supplier and partsupp; that is the result of trans-
forming SQ1 into a join. Again, a local group by strategy is
chosen to reduce the amount of data being communicated.

• DSQL step 3. Is the last step of the parallel plan in which
results are communicated to the user.

5. CONCLUSION
Through the use of technology developed for SQL Server, the

PDW QO goes beyond simple predicate pushing and join reorder-
ing, and incorporates a number of advanced query optimization
techniques. These techniques include things such as contradiction
detection, redundant join elimination, subquery unnesting, and out-
erjoin reordering. The cost model of PDW QO is specially crafted
to reflect the distributed environment, and its use on a rich space of
alternatives produces much higher-quality plans than simply paral-
lelizing the best serial plan.

Another important aspect of technology reuse was that it short-
ened the time to build a cost-based optimizer for PDW. Successful
delivery required designing the right abstractions and interfaces.
The quality and effectiveness of the result validate the approach,
which quickly incorporated state of the art commercial query opti-
mization in the PDW product.
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SELECT T1_1.p_partkey AS p_partkey

FROM   (SELECT   T2_1.p_partkey AS p_partkey

FROM     [tpch].[dbo].[part] AS T2_1

WHERE    (T2_1.p_name LIKE CAST ('forest%' AS VARCHAR (7)))

GROUP BY T2_1.p_partkey) AS T1_1

SELECT T1_1.p_partkey AS p_partkey,

T1_1.col1 AS col,

T1_1.l_suppkey AS l_suppkey,

T1_1.col AS col1

FROM   (SELECT   SUM(T2_2.l_quantity) AS col,

MAX(T2_2.l_partkey) AS col1,

T2_1.p_partkey AS p_partkey,

T2_2.l_suppkey AS l_suppkey

FROM     [tempdb].[dbo].[TEMP_ID_1] AS T2_1

INNER JOIN

(SELECT T3_1.l_partkey AS l_partkey,

T3_1.l_quantity AS l_quantity,

T3_1.l_suppkey AS l_suppkey

FROM   [tpch].[dbo].[lineitem] AS T3_1

WHERE  ((T3_1.l_shipdate >= CAST ('1994-01-01' AS DATE))

AND (T3_1.l_shipdate < 

CAST ('1995-01-01 00:00:00.000' AS DATETIME)))) AS T2_2

ON (T2_1.p_partkey = T2_2.l_partkey)

GROUP BY T2_1.p_partkey, T2_2.l_suppkey) AS T1_1

SELECT T1_1.ps_suppkey AS ps_suppkey

FROM   (SELECT   T2_1.ps_suppkey AS ps_suppkey

FROM     [tpch].[dbo].[partsupp] AS T2_1

INNER JOIN

(SELECT   SUM(T3_1.col1) AS col,

MAX(T3_1.col) AS col1,

T3_1.l_suppkey AS l_suppkey

FROM     [tempdb].[dbo].[TEMP_ID_2] AS T3_1

GROUP BY T3_1.p_partkey, T3_1.l_suppkey) AS T2_2

ON ((T2_2.col1 = T2_1.ps_partkey)

AND (T2_2.l_suppkey = T2_1.ps_suppkey)

AND (T2_1.ps_availqty > (CAST ((0.5) AS DECIMAL (1, 1)) * T2_2.col)))

GROUP BY T2_1.ps_suppkey) AS T1_1

SELECT   T1_2.s_name AS s_name,

T1_2.s_address AS s_address

FROM     (SELECT T2_1.n_nationkey AS n_nationkey

FROM   [tpch].[dbo].[nation] AS T2_1

WHERE  (T2_1.n_name = CAST ('CANADA' AS VARCHAR (6)))) 

AS T1_1

INNER JOIN

(SELECT T2_2.s_nationkey AS s_nationkey,

T2_2.s_name AS s_name,

T2_2.s_address AS s_address

FROM   (SELECT   T3_1.ps_suppkey AS ps_suppkey

FROM     [tempdb].[dbo].[TEMP_ID_3] AS T3_1

GROUP BY T3_1.ps_suppkey) AS T2_1

INNER JOIN

[tpch].[dbo].[supplier_repl] AS T2_2

ON (T2_2.s_suppkey = T2_1.ps_suppkey)) AS T1_2

ON (T1_2.s_nationkey = T1_1.n_nationkey)

ORDER BY T1_2.s_name ASC

Step boundary

Logical operation

Data move operation

Select s_name, s_address
from supplier, nation
where

s_suppkey in 
(

select ps_suppkey
from partsupp
where

ps_partkey in 
(

select p_partkey
from part
where p_name like 'forest%'

)
and ps_availqty > 
(

select
0.5 * sum(l_quantity)
from
lineitem
where
l_partkey = ps_partkey
and l_suppkey = ps_suppkey
and l_shipdate >= '1994-01-01'
and l_shipdate < 

DATEADD(year,1,'1994-01-01')
)

)
and s_nationkey = n_nationkey
and n_name = 'CANADA'

order by s_name;

QUERY 20
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Figure 7: Parallel query plan for TPCH query 20.
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