
The EXODUS Extensible DBMS Project: An Overview

Michael J. Carey, David J. DeWitt,
Goetz Graefe, David M. Haight,

Joel E. Richardson, Daniel T. Schuh,
Eugene J. Shekita, and Scott L. Vandenberg

Computer Sciences Department
University of Wisconsin

Madison, WI 53706

ABSTRACT

This paper presents an overview of EXODUS, an extensible database system project that is
addressing data management problems posed by a variety of challenging new applications. The
goal of the project is to facilitate the fast development of high-performance, application-specific
database systems. EXODUS provides certain kernel facilities, including a versatile storage
manager. In addition, it provides an architectural framework for building application-specific
database systems; powerful tools to help automate the generation of such systems, including a
rule-based query optimizer generator and a persistent programming language; and libraries of
generic software components (e.g., access methods) that are likely to be useful for many appli-
cation domains. We briefly describe each of the components of EXODUS in this paper, and we
also describe a next-generation DBMS that we are now building using the EXODUS tools.

1. INTRODUCTION

Until fairly recently, research and development efforts in the database systems area have focused primarily on
supporting traditional business applications. The design of database systems capable of supporting non-traditional
application areas, such as computer-aided design and manufacturing, scientific and statistical applications, large-
scale AI systems, and image/voice applications, has now emerged as an important research direction. Such new
applications differ from conventional database applications and from each other in a number of important ways.
First of all, their data modeling requirements vary widely. The kinds of entities and relationships relevant to a VLSI
circuit design are quite different from those of a banking application. Second, each new application area has a dif-
ferent, specialized set of operations that must be efficiently supported by the database system. For example, it
makes little sense to talk about doing joins between satellite images. Efficient support for such specialized opera-
tions also requires new types of storage structures and access methods. For applications like VLSI design, involving
spatial objects, R-Trees [Gutt84] are a useful access method for data storage and manipulation; to manage image
data efficiently, the database system needs to provide large arrays as a basic data type. Finally, a number of new
application areas require support for multiple versions of their entities [Snod85, Daya86, Katz86].

A number of research projects are addressing the needs of new applications by developing approaches to

making a database system extensible [DBE87]. These projects include EXODUS1 at the University of Wisconsin
[Care86a, Carey86c], PROBE at CCA [Daya86, Mano86], POSTGRES at UC Berkeley [Ston86b, Rowe87], STAR-
BURST at IBM Almaden Research Center [Schw86, Lind87], and GENESIS at the University of Texas-Austin
[Bato88a, Bato88b]. Although the goals of these projects are similar, and each uses some of the same mechanisms
to provide extensibility, their overall approaches are quite different. For example, POSTGRES is a complete
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

This research was partially supported by the Defense Advanced Research Projects Agency under contract N00014-85-K-0788, by the Na-
tional Science Foundation under grant IRI-8657323, by IBM through two Fellowships, by DEC through its Incentives for Excellence program,
and by donations from Apple Corporation, GTE Laboratories, the Microelectronics and Computer Technology Corporation (MCC), and Texas In-
struments.

1 EXODUS: A departure; in this case, from traditional approaches to database management. Also an EXtensible Object-oriented Data-
base System.

- 1 -

database management system, with a query language (POSTQUEL), a predefined way of supporting complex
objects (through the use of procedures as a data type), support for "active" databases via triggers and alerters, and
inferencing. Extensibility is provided via new data types, new access methods, and a simplified recovery mechan-
ism. A stated goal is to "make as few changes as possible to the relational model." The PROBE system, on the
other hand, is an advanced DBMS with support for complex objects and operations on them, dimensional data (in
both space and time dimensions), and a capability for limited recursive query processing. Unlike POSTGRES,
PROBE provides a mechanism for directly representing complex objects; the PROBE query language is an exten-
sion of DAPLEX [Ship81]. STARBURST is an extensible DBMS based on the relational data model, and its design
is intended to allow knowledgeable programmers to add extensions "on the side" in the form of abstract data types,
access methods, and external storage structures. Like EXODUS, STARBURST uses a rule-based approach to query
optimization to enable it to handle such extensions [Lohm88].

In contrast to these efforts, EXODUS and GENESIS are modular and modifiable systems, rather than being
complete, end-user DBMSs for handling all new application areas. The GENESIS project is aimed at identifying
primitive building blocks, together with facilities for describing how to combine building blocks, in order to allow a
new DBMS to be automatically composed from a library of existing database components. The goal of the
EXODUS project (which is in some sense a "database software engineering" project) is to provide a collection of
kernel DBMS facilities together with software tools to enable the semi-automatic construction of an application-
specific DBMS for a given new application area. Included in EXODUS are tools intended to simplify the develop-
ment of new DBMS components (e.g., a new access method or a new query language operator).

In this paper we describe the EXODUS approach to achieving extensibility. Section 2 of the paper provides
an overview of the various components of EXODUS. Section 3 describes the lowest level of the system, the
Storage Manager. Section 4 discusses the EXODUS approach to handling two difficult tasks involved in extending
a database system: implementing new access methods, and implementing new, application-specific database opera-
tions. EXODUS simplifies these tasks by providing a programming language called E, which extends C++ [Stro86]
with facilities for persistent systems programming. Section 5 describes the rule-based approach to query optimiza-
tion employed in EXODUS. Section 6 describes EXTRA and EXCESS, a data model and query language that we
are now building using the aforementioned tools. Finally, Section 7 summarizes the paper and discusses the imple-
mentation status of the various components of the EXODUS project.

2. AN OVERVIEW OF THE EXODUS ARCHITECTURE

Since one of the principal goals of the EXODUS project is to provide extensibility without sacrificing perfor-

mance, the design of EXODUS reflects a careful balance between what EXODUS provides for the user2 and what
the user must explicitly provide. Unlike POSTGRES, PROBE, or STARBURST, EXODUS is not intended to be a
complete system with provisions for user-added extensions. Rather, it is intended more as a "toolkit" that can be
easily adapted to satisfy the needs of new application areas. In this section we summarize our overall approach and
briefly introduce each of the key components and tools of EXODUS.

2.1. The EXODUS Approach

Two basic mechanisms are employed in EXODUS to help achieve our extensibility and performance goals:
First, where feasible, we furnish a generic solution that should be applicable to database systems for most any appli-
cation area. As an example, EXODUS supplies at its lowest level a layer of software termed the Storage Manager
which provides support for concurrent and recoverable operations on storage objects of any size. Our feeling is that
this level provides sufficient capabilities such that user-added extensions will not be necessary. However, due to
both generality and efficiency considerations, such a single, generic solution is not possible for every component of
a database system.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
2 Our use of the word user will be more carefully explained in the paragraphs ahead.

- 2 -

In cases where a single, generic solution is inappropriate, EXODUS instead provides either a generator or a
library to aid the user in constructing the appropriate software. As an example, we expect EXODUS to be used for
a wide variety of applications, each with a potentially different query language. As a result, it is not possible for
EXODUS to furnish a single, generic query language; this also makes it impossible for a single query optimizer to
suffice for all applications. Instead, we provide a generator for producing query optimizers for algebraic query
languages. The EXODUS query optimizer generator takes as input a collection of rules regarding the operators of
the query language, the transformations that can be legally applied to these operators (e.g., moving selections before
joins in a relational algebra query), and a description of the methods that can be used to execute each operator
(including their costs and side effects). As output, it produces an optimizer for the application’s query language in
the form of a C program.

In a conventional database system environment it is customary to consider the roles of two different classes of
individuals: the database administrator and the user. In EXODUS, a third type of individual is required to custom-
ize EXODUS into an application-specific database system. While we referred to this individual loosely as a "user"
in the preceding paragraphs, he or she is not a user in the normal sense (i.e., an end user, such as a bank teller or a
cartographer). Rather, this user of the EXODUS facilities is a "database engineer" or DBE; our goal has been to
engineer EXODUS so that only a moderate amount of database expertise is needed in order for a DBE to architect a
new system using the tools. Once EXODUS has been customized into an application-specific database system, the
DBE’s initial role is completed and the role of the database administrator begins. Thereafter, the DBE’s role is to
provide incremental improvements (if any), such as more efficient access methods or faster operator implementa-
tions.

2.2. EXODUS System Architecture

We present an overview of the design of EXODUS in the remainder of this section. While EXODUS is a
toolkit and not a complete DBMS, we find it clearer to describe the system from the viewpoint of an application-
specific database system that was constructed using EXODUS. In doing so, we hope to make it clear which pieces
of the system are provided without modification, which can be generated automatically, and which must be directly
implemented by the DBE using the E programming language.

Figure 1 presents the general structure of an application-specific database management system implemented
using EXODUS. The major facilities provided to aid the DBE in the task of generating such a system are as fol-
lows:

(1) The Storage Manager.

(2) The E programming language and its compiler.

(3) A library of type-independent Access and Operator Methods.

(4) A rule-based Query Optimizer Generator.

(5) Tools for constructing query language front-ends.

At the bottom level of the system is the Storage Manager. The basic abstraction at this level is the storage
object, which is an untyped, uninterpreted, variable-length byte sequence of arbitrary size. The Storage Manager
provides capabilities for reading and updating storage objects without regard for their size. To further enhance the
functionality provided by this level, buffer management, concurrency control, and recovery mechanisms for opera-
tions on shared storage objects are also provided. Finally, a versioning mechanism that can be used to support a
variety of application-specific versioning schemes is provided. A more detailed description of the Storage Manager
is presented in Section 3.

Although not shown in Figure 1, which really depicts the run-time structure of an EXODUS-based DBMS,
the next major component is the E programming language and its compiler. E is the implementation language for
all components of the system for which the DBE must provide code. E extends C++ by adding generic classes,
iterators, and support for persistent object types to the C++ type facilities and control constructs. For the most part,
references to persistent objects look just like references to other C++ objects; the DBE’s index code can thus deal

- 3 -

hh

COMPILER
codeE

CATALOG

MANAGER

METHODS

OPERATOR

QUERY

PARSER
QUERY

OPTIMIZER
&

COMPILER

COMPILED

QUERY

METHODS

ACCESS

STORAGE
MANAGER

SCHEMA
DATABASE

tree
operator

code

generated
component
coded by

DBI
fixed

component

E object

Figure 1: General EXODUS database system structure.

hh

with index nodes as arrays of key-pointer pairs, for example. Where persistent objects are referenced, the E com-
piler is responsible for inserting calls to fix/unfix buffers, to read/write the appropriate portions of the underlying
storage objects, and to handle other such low-level details. Thus, the DBE is freed from having to worry about the
internal structure of persistent objects. In order to regain performance, E will also enable the DBE to provide gui-
dance to the compiler in certain ways (e.g., by providing information to aid it in doing buffer management). E
should not be confused with database programming languages such as Pascal/R [Schm77] or RIGEL [Rowe79], as
these languages were intended to simplify the development of database applications code through a closer integra-
tion of database and programming language constructs. Similarly, despite its object-orientedness (stemming from
C++), it should not be confused with object-oriented database languages such as OPAL [Cope84, Maie87] or COP
[Andr87]. The objective of E is to simplify the development of internal systems software for a DBMS.

Layered above the Storage Manager is a collection of access methods that provide associative access to files
of storage objects and further support for versioning (if desired). For access methods, EXODUS will provide a
library of type-independent index structures such as B+ trees, Grid files [Niev84], and linear hashing [Litw80].
These access methods will be written using the generic class capability provided by the E language, as described in
Section 4. This capability enables existing access methods to be used with DBE-defined abstract data types without
modification — as long as the capabilities provided by the data type satisfy the requirements of the access methods.
In addition, a DBE may wish to implement new types of access methods in the process of developing an
application-specific database system. Since new access methods are written in E, the DBE is shielded from having

- 4 -

to map main memory data structures onto storage objects and from having to deal directly with other low-level
details of secondary storage.

While the capabilities provided by the Storage Manager and much of the Access Methods Layer are general-
purpose and are intended for use in each application-specific DBMS constructed using EXODUS, the third layer in
the design, the Operator Methods Layer, contains a mix of mostly DBE-supplied code and relatively little
EXODUS-supplied code. As implied by its name, this layer contains a collection of methods that can be combined
with one another in order to operate on (typed) storage objects. While EXODUS will provide a library of methods
for the operators of a prototype DBMS that we are building with the EXODUS tools (see Section 6), we expect that
a number of application-specific or data-model-specific operator methods will be needed. In general, the DBE will
have to implement one or more methods for each operator in the query language associated with the target applica-
tion. E will again serve as the implementation language for this task. Operator methods are discussed further in
Section 4.

The data model of a given application-oriented DBMS is defined by the DBE, with EXODUS providing what
amounts to an internal data model via the type system of the E programming language. E’s type system includes the
basic C++ types (e.g., int, float, char) and type constructors (e.g., class, struct, union, array), plus it provides addi-
tional support for generic classes and typed files. These facilities provide sufficient power to implement the higher-
level abstractions required by end-user data models, as discussed further in Section 4. The DBE is responsible for
this implementation task, and also for implementing (in E) the associated catalog manager for storing user schema
information. However, EXODUS does provide a tool, the Dependency Manager, which is designed to help keep
track of schema-related dependency information. In particular, this tool is intended to maintain type-related depen-
dencies that arise between types and other types, files and types, stored queries and types, etc., at the data model
level. More information about the EXODUS dependency manager can be found in [Care87].

The execution of a query in EXODUS follows a set of transformations similar to that of a relational query in
System R [Astr76]. The parser is responsible for transforming the query from its initial form into an initial tree of
database operators. After parsing, the query is optimized, converted into an E program, and then compiled into an
executable form. The output produced by the query optimizer consists of a rearranged tree of operator methods
(i.e., particular instances of each operator) to which query specific information such as selection predicates (e.g.,
name = "Mike" and salary > $200,000) will be passed as parameters. As mentioned earlier, EXODUS provides a
generator for producing the optimization portion of the query compiler. To produce an optimizer for an
application-specific database system, the DBE must supply a description of the operators of the target query
language, a list of the methods that can used to implement each operator, a cost formula for each operator method,
and a collection of transformation rules. The optimizer generator will transform these description files into C source
code for an optimizer for the target query language. At query execution time, this optimizer behaves as we have just
described, taking a query expressed as a tree of operators and transforming it into an optimized execution plan
expressed as a tree of methods. Section 5 describes the optimizer generator in greater detail.

Finally, the organization of the top level of a database system generated using EXODUS depends on whether
the goal is to support some sort of interactive interface, a query facility embedded in a programming language, or an
altogether different kind of interface. In the future we would like to provide tools to facilitate the creation of
interactive interfaces. We are currently implementing one such interface for the object-oriented data model and
query language described in Section 6. Through doing so, we hope to gain insight into the kind of tools that would
be helpful at the interface level of the system (in addition to learning how effective the current tool set is).

3. THE STORAGE MANAGER

In this section we summarize the key features of the EXODUS Storage Manager. We begin by discussing the
interface that the Storage Manager provides to higher levels of the system, and then we describe how arbitrarily
large storage objects are handled efficiently. We discuss the techniques employed for versioning, concurrency con-
trol, recovery, and buffer management for storage objects, and we close with a brief discussion about files of storage
objects. A more detailed discussion of these issues can be found in [Care86b].

- 5 -

3.1. The Storage Manager Interface

The Storage Manager provides a procedural interface. This interface includes procedures to create and des-
troy files and to open and close files for file scans. For scanning purposes, the Storage Manager provides a call to
get the object ID of the next object within a file. It also provides procedures for creating and destroying storage
objects within a file. For reading storage objects, the Storage Manager provides a call to get a pointer to a range of
bytes within a given storage object; the desired byte range is read into the buffers, and a pointer to the range is
returned to the caller. Another call is provided to inform the system that these bytes are no longer needed, which
"unpins" them in the buffer pool. For writing storage objects, a call is provided to ask the system to modify a
subrange of the bytes that were read. For shrinking/growing storage objects, calls to insert bytes into and delete
bytes from a specified offset in a storage object are provided, as is a call to append bytes to the end of an object.
Finally, for transaction management, the Storage Manager provides begin, commit, and abort transaction calls;
additional hooks are planned to aid in implementing concurrent and recoverable operations for new access methods
efficiently.

In addition to the functionality outlined above, the Storage Manager is designed to accept a variety of
performance-related hints. For example, the object creation routine mentioned above accepts hints about where to
place a new object (i.e., "place the new object near the object with object ID X"). The buffer manager accepts hints
about the size and number of buffers to use and what replacement policy to employ; these hints are supported by
allowing a buffer group to be specified with each object access, and having the buffer manager accept these hints on
a per-buffer-group basis. Buffer management policies ranging from simple schemes like global LRU to complex
schemes such as DBMIN [Chou85] are thus easily supported.

3.2. Storage Objects and Operations

As described earlier, the storage object is the basic unit of data in the Storage Manager. Storage objects can
be either small or large, a distinction that is hidden from higher layers of EXODUS software. Small storage objects
reside on a single disk page, whereas large storage objects occupy potentially many disk pages. In either case, the
object identifier (OID) of a storage object has the form (volume #, page #, slot #, unique #), with the unique #
being used to make OID’s unique over time (and thus usable as surrogates). The OID of a small object points to the
object on disk; for a large object, the OID points to its large object header. A large object header can reside on a
slotted page with other large object headers and small storage objects, and it contains pointers to other pages
involved in the representation of the large object. Other pages in a large object are private rather than being shared
with other objects (although pages are shared between versions of an object). When a small object grows to the
point where it can no longer be accommodated on a single page, the Storage Manager automatically converts it into
a large object, leaving its object header in place of the original small object. We considered the alternative of using
purely logical surrogates for OID’s rather than physical addresses, as in other recent proposals [Cope84, Ston86b],
but efficiency considerations led us to opt for a "physical surrogate" scheme — with logical surrogates, it would
always be necessary to access objects via a surrogate index.

Figure 2 shows an example of our large object data structure. Conceptually, a large object is an uninterpreted
byte sequence; physically, it is represented as a B+ tree-like index on byte position within the object plus a collec-

tion of leaf blocks (with all data bytes residing in the leaves).3 The large object header contains a number of
(count, page #) pairs, one for each child of the root. The count value associated with each child pointer gives the
maximum byte number stored in the subtree rooted at that child, and the rightmost child pointer’s count is therefore
also the size of the object. Internal nodes are similar, being recursively defined as the root of another object con-
tained within its parent node, so an absolute byte offset within a child translates to a relative offset within its parent
node. The left child of the root in Figure 2 contains bytes 1-421, and the right child contains the rest of the object
(bytes 422-786). The rightmost leaf node in the figure contains 173 bytes of data. Byte 100 within this leaf node is
byte 192 + 100 = 292 within the right child of the root, and it is byte 421 + 292 = 713 within the object as a whole.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3 This data structure was inspired by the ordered relation index of [Ston83], but our update algorithms are quite different [Care86b].

- 6 -

hh

PAGES

HEADER (ROOT)

INTERNAL

BLOCKS
LEAF

OID

786421

365192421282120

173192139162120

Figure 2: An example of a large storage object.

hh

Searching is accomplished by computing overall offset information while descending the tree to the desired byte
position. As described in [Care86b], object sizes up to 1 GB or so can be supported with only three tree levels
(header and leaf levels included).

Associated with the large storage object data structure are algorithms to search for a range of bytes (and
perhaps update them), to insert a sequence of bytes at a given point in the object, to append a sequence of bytes to
the end of the object, and to delete a sequence of bytes from a given point in the object. The insert, append, and
delete operations are novel because inserting or deleting an arbitrary number of bytes (as opposed to a single byte)
into a large storage object poses some unique problems compared to inserting or deleting a single record from a B+
tree or an ordered relation. Algorithms for these operations are described in detail in [Care86b] along with results
from an experimental evaluation of their storage utilization and performance characteristics. The evaluation showed
that the EXODUS storage object mechanism can provide operations on very large dynamic objects at relatively low
cost, and at a reasonable level of storage utilization (e.g., 80% for large dynamic objects, and very close to 100% for
large static objects).

3.3. Versions of Storage Objects

The Storage Manager provides primitive support for versions of storage objects. Versions of objects are
identified simply by OIDs. A storage object can have both working (current) versions and frozen (old) versions;
this distinction is recorded in each version’s object header. Working versions may be updated by transactions, while
frozen versions are immutable. A working version of an object can be made into a frozen version, and new working
versions can be derived from frozen versions as desired. It is also possible to delete a version of an object when that
particular version is no longer of interest. The reason for providing this rather primitive level of version support is
that different EXODUS applications may have widely different notions of how versions should be supported
[Ston81, Dada84, Clif85, Klah85, Snod85, Katz86]. We do not omit version management altogether for efficiency
reasons — it would be prohibitively expensive, both in terms of storage space and I/O cost, to maintain versions of
large objects by maintaining entire copies of objects.

Versions of large objects are maintained by copying and updating the pages that differ from version to ver-
sion. Figure 3 illustrates this by an example. The figure shows two versions of the large storage object of Figure 2,

- 7 -

hh

120 162 139 192 173

120 282 421 365

421 786

192 192

421 750

329

137

V1 2V

Figure 3: Two versions of a large storage object.

hh

the original (frozen) version, V 1, and a newer (working) version, V 2. In this example, V 2 was created by deriving a
working version from V 1 and subsequently deleting its last 36 bytes. Note that V 2 shares all pages of V 1 that are
unchanged, and it has its own copies of each modified page; each page pointer has a bit associated with it (not
shown in the figure) that distinguishes pointers to shared pages from pointers to unshared pages. Deriving a new
version of a large storage object creates a new copy of the root of the object, with subsequent updates leading to the
creation of copies of other nodes as needed. Since the number of internal pages in an actual large object is small
relative to the number of data pages in the object (due to high fanout for internal nodes), the overhead for versioning
large objects in this scheme is small — it is basically proportional to the difference between adjacent versions, and
not to the overall size of the objects. In the case of small objects, versioning is accomplished by simply copying the
entire object when creating a new version.

A working version such as V 2 may be updated via the insert, append, delete, and write operations provided
for all storage objects, and the Storage Manager also supports the deletion of unwanted versions of objects, as noted
above. When deleting a version of a large object, however, we must be careful — we must avoid discarding any of
the object’s pages that are shared (and thus needed) by other versions of the same object. An efficient version dele-
tion algorithm that addresses this problem, providing a safe way to delete one version with respect to a set of other

versions that are to be retained, is presented in [Care86b].4

3.4. Concurrency Control and Recovery

The Storage Manager provides concurrency control and recovery services for storage objects. Two-phase
locking [Gray79] of storage objects and files is used for concurrency control. For recovery, small storage objects
are handled using before/after-image logging and in-place updating at the object level [Gray79]. Recovery for large
storage objects is handled using a combination of shadowing and logging — updated internal pages and leaf blocks
are shadowed up to the root level, with updates being installed atomically by overwriting the old object header with
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

4 The notion of frozen/working versions was not present in [Care86b], but its version deletion algorithm is still applicable. The
frozen/working version distinction was added in order to allow versions of a large object to be updated by a series of transactions without forcing
each one to derive a new version of the object.

- 8 -

the new header [Verh78]. The name and parameters of the operation that caused the update are logged, and a log
sequence number [Gray79] is maintained on each large object’s root page; this ensures that operations on large
storage objects can be undone or redone as needed.

3.5. Buffer Management for Storage Objects

An objective of the EXODUS Storage Manager design is to minimize the amount of copying from buffer
space that is required. A related objective is to allow sizable portions of large storage objects to be scanned directly
in the buffer pool by higher levels of EXODUS software, but without requiring that large objects be small enough to
fit entirely in the buffer pool. To accommodate these needs, buffer space is allocated in variable-length buffer
blocks, which are integral numbers of contiguous pages, rather than in single-page units. When an EXODUS client
requests that a sequence of N bytes be read from an object X, the non-empty portions of the leaf blocks of X contain-
ing the desired byte range are read into one contiguous buffer block by obtaining a buffer block of the appropriate
size from the buffer space manager and then reading the pages into the buffer block in (strict) byte sequence order,
placing the first data byte from a leaf page in the position immediately following the last data byte from the previous
page. (Recall that leaf pages of large storage objects are usually not entirely full.) A descriptor is maintained for
the current region of X in memory, including such information as the OID of X, a pointer to its buffer block, the
length of the actual portion of the buffer block containing the bytes requested by the client, a pointer to the first such
byte, and information about where the contents of the buffer block came from. The client receives a pointer to the

descriptor through which the buffer contents may be accessed.5 Free space for the buffer pool is managed using
standard dynamic storage allocation techniques, and buffer block allocation and replacement is guided by the
Storage Manager’s hint mechanism.

3.6. Files of Storage Objects

Files are collections of storage objects, and they are useful for grouping objects together for several purposes.
First, the EXODUS Storage Manager provides a mechanism for sequencing through all of the objects in a file, so
related objects can be placed in a common file for sequential scanning purposes. Second, objects within a given file
are placed on disk pages allocated to the file, so files provide support for objects that need to be tightly clustered on
disk. A file is identified by a file identifier (FID) that points to its root page. Like large storage objects, files are
represented by an index structure similar to a B+ tree, but the key for the index is different — a file index uses disk
page number as its key. Each leaf page of the file index contains a collection of page numbers for slotted pages
contained in the file. (The pages themselves are managed separately using standard disk allocation techniques.)
The file index thus serves as a mechanism to gather the pages of a file together, and it also enables rapid scanning of
all of the objects within a given file. Rapid scanning is a consequence of the fact that the file B+ tree is keyed on
page number, meaning that a scan of the objects in a file will access them in physical order. Note that since all of
the objects in a file are directly accessible via their OIDs, a file is not comparable to a surrogate index — secondary
indices on the objects in a given file will contain OID entries, which point directly to the objects being indexed; this
is important from a performance standpoint. Further discussion of file representation, operations, concurrency con-
trol, and recovery may be found in [Care86b].

4. METHOD IMPLEMENTATION SUPPORT

As described in Section 2, application-specific database systems include access methods and operator
methods appropriate for their intended class of applications, and these will undoubtedly vary from one application
area to another. For example, while B+ trees and hashing are usually sufficient as access methods for conventional
business database systems, a database system for storing and manipulating spatial data is likely to need a spatial
access method such as the KDB tree [Robi81], R tree [Gutt84], or Grid file [Niev84]. Unfortunately, such struc-
tures, being highly algorithmic in nature, require the DBE to implement them rather than simply specifying them in
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5 As is discussed in Section 4, the E language hides this structure from the DBE.

- 9 -

some high-level form. A complication is that a given index structure often needs to handle data of a variety of types
(e.g., integers, reals, character strings, and various ADTs) as long as they satisfy the requirements for correct opera-
tion of the index structure. For instance, a B+ tree should work for all key types that provide an appropriate com-
parison operator [Ston86a]; this includes working for data types that are not defined by the DBE until after the
index code has been completely written and debugged. Similar issues arise for operator methods, which must also
be written in a general manner in order to handle new, unanticipated data types.

In adding a new access method to a DBMS, sources of complexity include (i) coding and verifying the new
algorithms, (ii) mapping the new data structure onto the primitive objects provided by the storage system of the
DBMS, (iii) making the access method code interact properly with the buffer manager, and (iv) ensuring that con-
currency control and recovery are handled correctly. Although access method designers are mostly interested in
item (i), this can comprise as little as 30% of the actual code that must be written; items (ii)-(iv) comprise the
remaining 70% or so of the overall code needed to add an access method to a typical commercial DBMS [Ston85].
Items (i)-(iii) are all issues for operator methods as well, and again (i) is the issue that the DBE would presumably
like to focus on. To improve this situation, EXODUS provides a programming language, E, for the DBE to use
when implementing new methods. E is intended to shield the DBE from items (ii)-(iv), so the E compiler produces
code to handle these details based on the DBE’s index code (plus some declarative "hints").

In the remainder of this section, we describe the E language and how its various features simplify the DBE’s
programming tasks. E was designed with the DBMS architecture of Section 2 in mind, so the access methods,
operator methods, and utility functions of the DBMS are all intended to be written in E. In addition to these com-
ponents, the DBMS includes the Storage Manager and the E compiler itself. At runtime, database schema
definitions (e.g., "create relation" commands) and queries are first translated into E programs and then compiled.
One result of this architecture is a system in which the "impedance mismatch" [Cope84] between type systems is
reduced. Another is that the system is easy to extend. For example, the DBE may add a new data type by coding it
as an E class. The E programming language is an upward-compatible extension of C++ [Stro86]; E’s extensions
include both new language features and a number of predefined classes. We present the major features of E briefly
here, and refer to the reader to [Rich87, Rich89a, Rich89b] for additional details and examples of how E constructs
apply to DBMS implementation problems.

4.1. Persistence in E

In order to provide support for persistence, shielding the DBE from having to interact directly with the low-
level, typeless view of storage objects provided by the Storage Manager, the E language mirrors the existing C++
type system with constructors having the db (database) attribute. Informally, a db type is defined to be:

(1) A fundamental db type, including dbshort, dbint, dblong, dbfloat, dbdouble, dbchar, or dbvoid.

(2) A dbclass, dbstruct, or dbunion. Such classes may have data members (fields) only of other db types, but
the argument and return types of member functions (methods) are not similarly restricted.

(3) A pointer to a db type object.

(4) An array of db type objects.

An object that is to be persistent is required to be of a db type. However, a db type object can be either persistent or
non-persistent. Note that any type definable in C++ may be analogously defined as a db type. Furthermore, since
persistence is orthogonal [Atki87] over db types, one could program exclusively in db types and achieve the effect

of strict orthogonality if so desired.6 Db types were introduced in E so that the compiler can always distinguish
between objects that can only reside in memory and those that generally reside on disk (but may also reside in
memory), as their underlying implementation is very different; this distinction is made so that critical, main-
memory-only types can be implemented every bit as efficiently as normal C++ types.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

6 Note that one could even use macros to redefine the keywords class to mean dbclass, struct to mean dbstruct, union to mean dbunion, int
to mean dbint, etc.

- 10 -

Given db types for describing the type structure of objects that may be persistent, E supports the declaration
of actual persistent objects via a new storage class called persistent; this is in addition to the usual C++ storage
classes (extern, automatic, static, and register). For example, to declare a persistent object named emp of a dbclass
named Employee in an E program, one would simply write:

persistent Employee emp;

This declaration causes the name emp to become a handle for a persistent Employee object; the object itself will
reside in the Storage Manager. Uses of the object then look exactly like they would if emp were an instance of a
normal C++ class. Similarly, member functions of the Employee dbclass are coded just as if it were an equivalent
non-db class. The E compiler is implemented as an E-to-C translator, and it translates references to portions of per-
sistent objects into C code that calls the Storage Manager as needed to manipulate the contents of persistent objects.
Persistent E objects are mapped one-to-one onto storage objects, and pointers to db type objects are actually OIDs;
thus, in E the DBE retains control over the format of persistent objects without having to explicitly make calls to the
Storage Manager.

4.2. Generic Classes for Unknown Types

As described earlier, many of the types involved in database programming are not known until well after the
code needing those types is written by the DBE. Access method code does not know what types of keys it will con-
tain, nor what types of entities it will index, and the code implementing a join algorithm does not know what types
of entities it will be called upon to join.

To address this problem, E augments C++ with generic (or generator) classes, which are very similar to the
parameterized clusters of CLU [Lisk77]. Such a class is parameterized in terms of one or more unknown types;

within the class definition, these (formal) type names can be used freely as regular type names.7 This mechanism
allows one to define, for example, a class of the form Stack[T] where the specific class T of the stack elements
is not known. The user of such a class can then instantiate the generic class by providing actual type parameters to
the class. For example, one may define a stack class IntStack for handling integer data and then declare an

integer stack x by saying:8

class IntStack: Stack[int];
IntStack x;

Similarly, the DBE can implement a B+ tree as a generic dbclass BTree[KeyType, EntityType] where both
the key type and the type of entity being indexed are dbclass parameters. Later, when a user wishes to build an
index over employees on social security number, the system will generate and compile a small E program that
instantiates and uses the dbclass:

Emp_BTree: BTree[SSNo_type, Emp_type];
persistent Emp_BTree EmpSSNoIndex;

Such instantiations are dealt with efficiently via a linking process along the lines of that used in the implementation
of CLU [Atki78].

Figures 4a and 4b give a partial example of a generic dbclass, BTreeNode, to illustrate the flavor of how
such classes are described in E. This dbclass represents the node structure of a B+ tree index, and once defined it
could be used in writing the generic B+ tree dbclass discussed above (as we will show shortly). The interface por-
tion of the dbclass is shown in Figure 4a. The dbclass has two dbclass parameters, KeyType and EntityType,
and the dbclass KeyType is required to have a compare member function. KeyType and EntityType are

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
7 In addition to type parameters, generic classes and dbclasses can also have constant and function parameters.
8 We chose this syntax over Stack[int] x to maintain compatibility with the existing C++ class derivation syntax.

- 11 -

hh

enum status { FOUND, NOT_FOUND };

dbclass BTreeNode
[

dbclass KeyType{ // type of keys in tree
int compare(KeyType); // (compare function needed)

},
dbclass EntityType{ } // type of indexed entities

]

{

public:

// type for key-pointer pairs
dbstruct KPpair {
KeyType keyVal;
dbunion {

EntityType* entityPtr; // used in leaf nodes
BTreeNode* childPtr; // used in interior nodes

} ptr;
};

// internal structure of a B+ tree node, consisting of the
// node height (which is 0 for leaf nodes), the number of
// keys currently in the node, and an array of key/pointer
// pairs of the appropriate size
dbint height;
dbint nKeys;
KPpair kppArray[(PAGESIZE - 2*sizeof(int)) / sizeof(KPpair)];

// binary search function for a single node
status searchNode(KeyType key, int& index);

// etc. ... (other node member functions) ...

}; // dbclass BTreeNode

Figure 4a: The generic dbclass BTreeNode.

hh

the key and entity types for the node, and the compare member function compares two keys9 and returns -1, 0, or 1
depending on their relative order. The structure of a B+ tree node is described as having a height, a count of the
keys in the node, and an array of key-pointer pairs. The size of the array is determined by the constant PAGESIZE,
which is the maximum object size (in bytes) that will fit on one Storage Manager disk page, together with the size of

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
9 It compares the key to which the function is applied with the key passed as an explicit function argument, as illustrated in Figure 4b.

- 12 -

hh

// binary search of B+ tree node

status BTreeNode::searchNode(KeyType key, int& index) {

int min = 0;
int max = nKeys - 1;
int mid;
int cmpVal;

while (min <= max) {

mid = (min + max) / 2;
cmpVal = kppArray[mid].keyVal.compare(key);

if (cmpVal < 0)
{ min = mid + 1; }

else if (cmpVal == 0)
{ index = mid; return FOUND; }

else
{ max = mid - 1; }

} // while

return NOT_FOUND;

} // BTreeNode::searchNode

Figure 4b: Code for BTreeNode’s searchNode member function.

hh

a key-pointer pair.10 The searchNode member function in Figure 4b shows that the code for potentially per-
sistent (i.e., dbclass) objects looks just like normal C++ code.

4.3. Fileof[T] for Persistent Collections

In addition to providing support for persistent objects, and providing generic dbclasses for programming in
the face of missing type information, E also provides support for handling large, scannable collections of persistent
objects of similar type. E’s provision here is a built-in generic dbclass, fileof[T], where T must be a dbclass.
As an example, if Department is a dbclass, a useful new dbclass can be created via the declaration:

dbclass DeptFile: fileof[Department];

Objects of type DeptFile can now be used to hold entire sets of Department objects (including objects of any
subclass of Department). The operational interface of the generic fileof class allows the user to bind typed
pointers to objects in a file, to create and destroy objects in a file, etc. A file can also be viewed as a "persistent
heap" in a sense, as the new statement for dynamically allocating persistent objects requires the specification of a
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

10 This is not particularly elegant, but it is necessary for performance.

- 13 -

file in which to create the object.

As an example, the following function returns the sum of the budgets of the departments in a file of Depart-
ment objects. The file is passed by reference, and we assume that Department objects have a public data
member called budget:

float TotalBudget(DeptFile& depts)
{

Department* d;
float sum = 0.0;
for(d = depts.get_first(); d != NULL; d = depts.get_next(d)) {

sum += d->budget;
}
return sum;

}

While this example is extremely simple, it illustrates how easy it can be to scan the contents of a file of objects. No
typecasting is needed to use the pointer d, and no buffer calls are necessary. Each instance of the fileof dbclass
is implemented as a Storage Manager file and represented by its associated FID; the DBE is shielded from file-
related Storage Manager calls by the fileof dbclass interface. Finally, for cases where the restriction of storing
only instances of a type T and its subtypes in a file is too limiting, an untyped, byte-oriented file dbclass is also
provided.

4.4. Iterators for Scans and Query Processing

A typical approach for structuring a database system is to include a layer which provides scans over objects in
the database. A scan is a control abstraction which provides a state-saving interface to the "memoryless" storage
systems calls. Such an interface is needed for the record-at-a-time processing done in higher layers. A typical
implementation of scans will allocate a data structure, called a scan descriptor, to maintain all needed state between
calls to the storage system; it is then up to the user to pass the descriptor with every call.

The control abstraction of a scan is provided in EXODUS via the notion of an iterator [Lisk77]. An iterator is
a coroutine-like function that saves its data and control states between calls; each time the iterator produces (yields)
a new value, it is suspended until it is resumed by the client. Thus, no matter how complicated the iterator may be,
the client only sees a steady stream of values being produced. The client can invoke an iterator using a new kind of
control statement, the iterate loop of E (which generalizes the for ... in loop of CLU).

The general idea for implementing scans should now be clear. For example, to implement a scan over B+
trees, one can write an iterator function for the BTree class that takes a lower bound and an upper bound as argu-
ments. The scan will begin by searching down to the leaf level of the tree for the lower bound, keeping a stack of
node pointers along the way. It will then walk the tree, yielding object references one at a time, until reaching the
upper bound; alternatively, if leaves were linked together, it could walk through the sequence set. The iterator will
then terminate. Figure 5 shows what the interface definition for such a generic BTree class might look like, includ-
ing a constructor function to initialize a newly created B+ tree index, a destructor function that is invoked to clean
up when a B+ tree is destroyed, member functions to insert and delete index entries, and the scan iterator that we
just described.

Iterators can also be used to piece executable queries together from an access plan tree. If one views a query
as a pipeline of processing filters, then each processing stage can be implemented as an iterator which is a client of
one or more iterators (upstream in the pipe) and yields result tuples to the next stage (downstream in the pipe). Exe-
cution of the query pipeline will be demand-driven in nature. For example, the DBE for a relational DBMS would
write various operator methods for the select, project, and join operations as iterators in this fashion. Given the
access plan tree that results from optimizing a user query, it is not difficult to produce E code that implements the
pipeline by plugging together instances of these iterators. This approach to forming queries is further described in
[Rich87], and it was also the basis for a relational DBMS prototype that we developed using the EXODUS tools for
a demonstration at SIGMOD-88. The idea is illustrated by the following excerpt from our relational DBMS

- 14 -

prototype. This code is an iterator member function from a (generic) class that provides a method for the equi-join
operator:

iterator DstType* index_join::next_tuple()
{

DstType rslt;
AttrType joinVal;

iterate(SrcType1* outer = outerQuery->next_tuple()) {
extract(outer, &joinVal);
iterate(SrcType2* inner = innerIndex->scan(joinVal, joinVal)) {

concatenate(outer, inner, &rslt);
yield(&rslt);

}
}

}

This code implements the next_tuple iterator for computing a join via an index-based algorithm. SrcType1,
SrcType2, and DstType are the outer, inner, and result tuple types (respectively), and AttrType is the type of
the join attribute. The join method iterates over a stream of outer relation tuples using the iterator next_tuple
provided by the subquery (outerQuery) feeding the join, and for each tuple it extracts its join attribute value
using the function extract. It then scans the inner relation via a B+ tree index on the join attribute

hh

dbclass BTree [
dbclass KeyType{ // type of keys in tree

int compare(KeyType); // (compare function needed)
},
dbclass EntityType{ } // type of indexed entities

]
{

// instantiate types used for B+ tree index
dbclass Node: BTreeNode[KeyType, EntityType];
dbclass NodeFile: fileof[Node];

// represent B+ tree as file of nodes plus root pointer
NodeFile tree;
Node* root;

public:
BTree(); // constructor function
˜BTree(); // destructor function
EntityType* insert(KeyType, EntityType*);
EntityType* delete(KeyType, EntityType*);
iterator EntityType* scan(KeyType, KeyType);

}; // dbclass BTree

Figure 5: Interface for the generic dbclass BTree.

hh

- 15 -

(innerIndex), using the B+ tree’s scan iterator to find matching inner tuples. Each time it finds a matching
tuple it calls the concatenate function to concatenate the outer and inner tuples, forming a result tuple, and
yields the result tuple to the next operator method in the query stream. (The extract and concatenate func-
tions and the outerQuery and innerIndex pointers are initialized based on arguments passed to the
index_join class constructor, as shown in a more complete example in [Rich87].)

4.5. Method Performance Issues

Since E is the language used by the DBE to implement key portions of the code for a DBMS, performance is
clearly an important issue. One performance issue related to E is how frequently the code produced by the E com-
piler issues calls to the Storage Manager. We are currently working on an optimization pass for the E compiler that
will perform transformations to reduce this frequency. For example, if a number of fields of an object are refer-
enced, the compiler should generate a single call to retrieve the relevant portion of the object all at once (as opposed
to a series of individual calls). Or, if an object is a large array (e.g., an image), it may be useful/necessary to
transform a loop that processes all of the elements in the array into a nested loop that processes a block of array ele-
ments at a time. We also plan to add "hint" facilities to E in order to allow the DBE to guide the E compiler in mak-
ing performance-related decisions (e.g., by specifying buffer group sizes and replacement policies for critical opera-
tions).

A second performance issue, relevant especially to access method code, is that of specialized locking and
recovery schemes (e.g., B+ tree locking protocols [Baye77]). While the two-phase locking and log-based recovery
mechanisms employed by the Storage Manager will ensure the correct and recoverable operation of E programs,
these mechanisms are likely to prove too restrictive for a truly high-performance DBMS. Our long-term goal is to
add transaction control facilities to E in order to permit clever DBEs to implement index-specific concurrency con-
trol and recovery algorithms when they are needed.

4.6. Modeling End-User Schemas

As discussed briefly in Section 2, the type system of the E language can in some sense be viewed as the inter-
nal type system of EXODUS: To support a target end-user data model, the DBE must thus develop mappings from
the data model’s type system to E’s type system; the collection of available primitive internal EXODUS types thus
includes integers, floating point numbers, characters, and enumerations, and the available type constructors include
pointers, arrays, structures, and unions. New abstract data types (e.g., rectangle, complex number, or image) and
their associated operations can be defined as E dbclasses. In addition, new data model type constructors (e.g., list or
set) can be modeled by implementing them as parameterized E dbclasses. Since E provides pointers together with a
rich collection of type constructors, even complex, recursive, end-user object types can be modeled in E without too
much difficulty. We thus expect that the internal type system of EXODUS will be powerful enough to satisfactorily
model most any application area’s type system.

5. QUERY OPTIMIZATION AND COMPILATION

Given the unforeseeably wide variety of data models we hope to support with EXODUS, each with its own
operators (and corresponding methods), EXODUS includes a query optimizer generator that produces an
application-specific query optimizer from an input specification. The generated optimizer repeatedly applies alge-
braic transformations to a query and selects access paths for each operation in the transformed query. This transfor-
mational approach is outlined by Ullman for relational DBMSs [Ullm82], and it has been used in the Microbe data-
base project [Nguy82] with rules coded as Pascal procedures. We initially considered using a rule-based AI
language to implement a general-purpose optimizer, and then to augment it with data model specific rules. Prolog
[Cloc81] and OPS5 [Forg81] seemed like interesting candidates, as each provides a built-in "inference engine" or
search mechanism. However, this convenience also limits their use, as their search algorithms are rather fixed and
hard to augment with search heuristics (which are very important for query optimization). Based on this limitation,
and also on further considerations such as call compatibility with other EXODUS components and optimizer execu-
tion speed, we decided instead to provide an optimizer generator [Grae87a, Grae87b] which produces an optimiza-
tion procedure in the C programming language [Kern78].

- 16 -

The generated optimization procedure takes a query as its input, producing an access plan as its output. A
query in this context is a tree-like expression with logical operators as internal nodes (e.g., a join in a relational
DBMS) and sets of objects (e.g., relations) as leaves. It is not part of the optimizer’s task to produce an initial alge-
braic query tree from a non-procedural expression; this is done by the user interface and parser. An access plan is a
tree with operator methods as internal nodes (e.g., a nested loops join method) and with files or indices as leaves.
Once an access plan is obtained, it is then transformed into an iterator-based E program by a procedure that walks
the access plan tree (in a manner loosely related to that of [Frey86]).

5.1. Basic Optimizer Generator Inputs

There are four key elements which the optimizer generator requires in a description file in order to generate
an optimizer: (1) the operators, (2) the methods, (3) the transformation rules, and (4) the implementation rules.
Operators and their methods are characterized by their name and arity. Transformation rules specify legal
(equivalence-preserving) transformations of query trees, and consist of two expressions and an optional condition.
The expressions contain place-holders for lower parts of the query which are unaffected by the transformation, and
the condition is a C code fragment which is inserted into the optimizer at the appropriate place. Finally, an imple-
mentation rule consists of a method, an expression that the method implements, and an optional condition. As an
example, here is an excerpt from the description file for a prototype relational query optimizer:

%operator 2 join
%method 2 nested-loops-join merge-join
join (1, 2) <-> join (2, 1);
join (1, 2) by nested-loops-join (1, 2);

In this example, join is declared to be a binary operator, and nested-loops-join and merge-join are
declared to be two binary methods. The symbol <-> denotes equivalence (i.e., a potential two-way transformation)
in the context of a transformation rule, and by is a keyword used for implementation rules. The transformation rule
in the above example states that join is commutative, and the implementation rule says that nested loops-
join is a join method. If merge-join is a method that is only useful for joining sorted relations, then its imple-
mentation rule would have to include a condition to test whether or not each input relation is sorted appropriately.

5.2. Optimizer Support Functions

In addition to a declarative description of the data model, the optimizer generator requires the DBE to provide
a collection of support procedures in a code section of the optimizer description. These procedures are C routines
that access and/or manipulate the optimizer’s data structures. The generated optimization procedure employs two
principal data structures, MESH and OPEN. MESH is a directed acyclic graph that holds all of the alternative
operator trees and access plans that have been explored so far, employing a rather complex pointer structure to
ensure that transformations can be identified and performed quickly (and also that equal subexpressions will be pro-
cessed only once). OPEN is a priority queue containing currently applicable transformations, as described further in
Section 5.3.

The overall cost of an access plan is defined as the sum of the costs of the methods involved, and the objective
of optimization is to minimize this sum. Thus, for each method, the DBE must provide a cost function for calculat-
ing the cost of the method based on the characteristics of the method’s input. The method’s cost function will be
called by the generated optimizer whenever it considers using the method for implementing an operator (or a pattern
of operators). The input arguments for method cost functions are pointers to the root node of the relevant portion of
the query tree in MESH and to the nodes in MESH that produce the input streams according to the associated imple-
mentation rule.

In addition to method cost functions, a property function is needed for each operator and each method. The
DBE is permitted to define properties (as C structures) that are to be associated with each operator and method node
in MESH. Operator properties are logical properties of intermediate results, such as their cardinalities and schemas.
Method properties are physical properties (i.e., method side effects), such as sort order in our merge-join example.
Operator property functions are called by the generated optimizer when transformations are applied, and method
propery functions are invoked when methods are selected.

- 17 -

Each node in MESH contains arguments associated with the operator represented by the node and with the
best method that has been found for the subquery rooted at the node. In a relational optimizer, for example, the
select and join operators have predicates as arguments, and the project operator has a field list as an argument. A
method that implements a combined select-project operation would have both a predicate and a field list as argu-
ments. As with properties, it is necessary for the DBE to define this data-model-dependent aspect of a node (typi-
cally as a C union). By default, operator and method arguments are copied automatically between corresponding
MESH nodes, which is fine for many simple transformation and implementation rules (e.g., join commutativity,
which simply reorders operators in the query tree). However, for rules where such copying is insufficient, the DBE
must provide argument transfer functions to manipulate the arguments. For example, consider the following
transformation rule:

select 9 (product (1, 2)) -> join (select(1), select(2)) xpj_arg_xfer
{{

if (no_join_predicate(OPERATOR_9.oper_argument))
REJECT;

}};

This (one-way) transformation rule replaces a selection over a cross-product with a join of two selections. The
function xpj_arg_xfer, which the DBE must provide, will be called when the rule is applied by the generated
optimizer in order to rearrange the operators’ predicate arguments; it will need to split the predicate associated with
the select operator on the left-hand side of the rule into a join predicate and two select predicates for the operators
on the rule’s right-hand side. This example also illustrates several other features that were mentioned earlier. First,
it shows how a condition can be associated with a rule, as the transformation will be rejected if the
no_join_predicate function provided by the DBE determines that no join predicate exists. Second, it shows
how access is provided to operator arguments. The select operator on the left-hand side of the example rule is num-
bered to identify it uniquely within the rule so that its oper_argument field can be passed to the function
employed in the condition. Method arguments and properties of operators and methods can be accessed in a similar
manner.

Finally, in some cases the DBE may wish to assist the optimizer in estimating the benefit of a given transfor-
mation before the transformation is actually performed. A function can be named in the transformation rule using
the keyword estimate, in which case this function will be called by the optimizer to estimate the expected cost of a
transformed query based on the relevant portion of the query tree, the operator arguments, and the operator and
method properties.

At first glance, it may appear that there is quite a bit of code for the DBE to write. However, not all of the
functions outlined above are required. In particular, only the cost functions are absolutely necessary. If the DBE
does not specify a type for operator property fields, then operator property functions are not necessary; similarly,
method property functions are only needed if a method property type is specified. Argument transfer functions and
estimation functions are optional, and need not be specified except for rules where their functionality is required.
Finally, remember that a key design goal for the EXODUS optimizer generator was data model independence, so
these functions really cannot be built into the optimizer generator. However, we do intend to provide libraries of
generally useful functions (such as predicate manipulation routines) that the DBE can use in cases where they are
appropriate.

5.3. Operation of the Generated Optimizer

The generated optimization procedure starts by initializing the MESH and OPEN data structures. MESH is
set up to contain a tree with the same structure as the original query. The method with the lowest cost estimate is
then selected for each node in MESH using the implementation rules. Finally, the transformation rules are used to
determine possible transformations which are inserted into OPEN. Once MESH and OPEN have been initialized in
this manner, the optimizer repeats the following transformation cycle until OPEN is empty: The most promising
transformation is selected from OPEN and applied to MESH. For all nodes generated by the transformation, the
optimizer tries to find an equal node in MESH to avoid optimizing the same expression twice. (Two nodes are equal
if they have the same operator, the same argument, and the same inputs.) If an equal node is found, it is used to

- 18 -

replace the new node. The remaining new nodes are matched against the transformation rules and analyzed, and the
methods with the lowest cost estimates are selected.

This algorithm has several parameters which serve to improve its efficiency. First, the promise of each
transformation is calculated as the product of the top node’s total cost and the expected cost factor associated with
the transformation rule. To insure that a matching transformation rule with a low expected cost factor will be
applied first, entries in OPEN are prioritized by their expected cost decrease. Expected cost factors provide an easy
way to ensure that restrictive operators are moved down in the tree as quickly as possible; it is a general heuristic
that the cost is lower if constructive operators such as join and transitive closure have smaller inputs. Second, it is
sometimes necessary to apply equivalence transformations even if they do not directly yield cheaper solutions, as
they may be needed as intermediate steps to even less expensive access plans. Such transformations represent hill
climbing, and we limit their application through the use of a hill climbing factor. Lastly, when a transformation
results in a lower cost, the parent nodes of the old expression must be reanalyzed to propagate any cost advantages;
a reanalyzing factor, similar to the hill climbing factor, limits this propagation in cases where the new plan’s cost is
worse than the best equivalent subquery by more than this factor.

It is a non-trivial problem to select values for the optimization parameters so as to guarantee optimal access
plans together with good optimizer performance. Thus, it is would be nice if they could be determined and adjusted
automatically. We have not yet automated the selection of the hill climbing or reanalyzing parameter values, but we
have successfully automated the choice of expected cost factors. Our current prototype initializes the expected cost
factors of all transformation rules to 1, the neutral value, and then adjusts them using sliding geometric averages.
This has turned out to be quite effective in experiments with several prototype relational optimizers [Grae87a,
Grae87b]; our experience has been that generated optimizers are fast enough for production use, and that the access
plans that they produce are consistently very close to optimal. We have also found that the EXODUS optimizer
generator provides a useful, modular framework for breaking the data-model-dependent code of a query optimizer
into small but meaningful pieces, which aids in the rapid prototyping and development of new query optimizers.

6. A DBMS SUPPORTING COMPLEX OBJECTS AND OBJECT ORIENTATION

As a number of the components of EXODUS are now ready for an initial trial, we recently turned our atten-
tion to the process of selecting a target data model to implement using the EXODUS toolkit. The goals of this
implementation effort are to validate the EXODUS approach to DBMS development, to serve as a forcing function
for developing a library of access methods and operator methods, and to provide a system that can serve as a
demonstration of the use of EXODUS for potential users. Since no single data model and query language was quite
what we were looking for (in terms of our goals), we decided to design our own data model and query language.
The EXTRA data model and EXCESS query language are the result of this design effort. The EXTRA data model
includes support for complex objects with shared subobjects, a novel mix of object- and value-oriented semantics
for data, support for persistent objects of any type in the EXTRA type lattice, and user-defined abstract data type
extensions (ADTs). The EXCESS query language provides facilities for querying and updating complex object
structures, and it can be extended through the addition of ADT functions and operators (written in E) and pro-
cedures and functions for manipulating EXTRA schema types (written in EXCESS). This section of the paper
presents an overview of the key features of EXTRA and EXCESS; more details can be found in [Care88].

6.1. The EXTRA Data Model

An EXTRA database is a collection of named persistent objects of any type that can be defined using the
EXTRA type system. EXTRA separates the notions of type and instance. Thus, users can collect related objects
together in semantically meaningful sets and arrays, which can then be queried, rather than having to settle for
queries over type extents as in many other data models (e.g., [Mylo80, Ship81, Bane87, Lecl87, Rowe87]). EXTRA
provides a collection of type constructors that includes tuple, set, fixed-length array, and variable-length array. In
addition, there are four flavors of instance values, own, ref, own ref, and own unique ref (although casual users
such as query writers need not be concerned with this distinction). Combined with the EXTRA type constructors,
these provide a powerful set of facilities for modeling complex object types and their semantics. Finally, EXTRA
provides support for user-defined ADTs, derived attributes, and automatic maintenance of inverse relationships

- 19 -

among attributes.

Figure 6 shows a simple database defined using the EXTRA data model. In EXTRA, the tuple, set, and array
constructors for complex objects are denoted by parentheses, curly braces, and square brackets, respectively. The
figure should be fairly self-explanatory, with the exception of the keywords own, unique, and ref. In EXTRA,
subordinate entities are treated as values (as in nested relational models [Sche86]), not as objects with their own
separate identity, unless prefaced by ref, own ref, or own unique ref in a type definition or an object creation state-
ment. The declaration ref x indicates that x is a reference to an extant object. Own ref x indicates that x has object
identity but its existence is dependent on the existence of at least one object that refers to it via an own ref refer-
ence. Own unique ref x indicates that x has object identity but its existence is dependent on a unique owning
object.

Briefly, Figure 6 defines four types, all of which happen to be tuple types in this example: Person, Student (a
subtype of Person), Employee (another subtype of Person), and Department. It then defines a university database
consisting of two named, persistent objects: Students, which is a set of Student objects, and Departments, which is a
set of Department objects. Since both are of the form "{ own unique ref ... }", these two sets own their member
objects and these member objects will be deleted when their owning sets are subsequently destroyed. Each Depart-
ment object in the set Departments contains a set of Employee objects that work in that Department, and it owns
these objects (i.e., a given Employee object can be thought of as being part of a "composite" [Bane87] Department
object). Both Employee and Student objects contain (references to) a Department object that they work for or major
in, respectively, and the management structure for the employees is captured by the manager and sub_ords attributes
of Employee objects.

Two concepts are central in the design of EXTRA/EXCESS: extensibility and support for complex objects.
In addition, the model incorporates the basic themes common to most semantic data models [Hull87, Peck88].
Extensibility in EXTRA/EXCESS is provided through both an abstract data type mechanism, where new types can
be written in the E programming language and then registered with the system, and through support for user-defined
functions and procedures that are written in the EXCESS query language and operate on user-defined EXTRA
types. Complex objects are objects in the database, possibly composed of other objects, that have their own unique
identity. Such objects can be referenced by their identity from anywhere in the database. In [Bato84], four useful
varieties of complex objects are identified: disjoint-recursive, disjoint-nonrecursive, nondisjoint-recursive, and

nondisjoint-nonrecursive.11 The EXTRA data model is capable of modeling all four varieties.

EXTRA also provides many of the capabilities found in semantic data models. Four primitive modeling con-
cepts fundamental to most semantic data models [Hull87, Peck88] are: the is-a relationship (also known as general-
ization), the part-of relationship (often called aggregation), the instance-of relationship (also referred to as
classification), and the member-of relationship (called association in some models). Each of these concepts is easily
modeled using the facilities of EXTRA. Generalization is modeled in EXTRA by using the inherits keyword to
indicate that a type inherits attributes and functions from another type. For example, an Employee is a Person in
Figure 6. (Note that our notion of generalization is often called "specialization" in the semantic modeling litera-
ture.) Aggregation is easily modeled using the tuple constructor — for instance, a Department is an aggregation of
its employees, its manager, etc. (We ignore the distinction between attributes, which merely describe an object, and
components of an object). Classification is simply the notion of type-instance dichotomy, and is present in EXTRA
in the distinction between the define type and create statements in Figure 6. Finally, association is modeled by the
set constructor of EXTRA. An example of this is the set of employees which are subordinate to a manager.

6.2. The EXCESS Query Language

EXCESS queries range over objects created using the create statement. EXCESS is based on QUEL
[Ston76], GEM [Zani83], POSTQUEL [Rowe87], and SQL extensions for nested relations [Dada86, Sche86].
EXCESS is designed to provide a uniform query interface to sets, arrays, tuples, and single objects, all of which can
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

11 Two objects are disjoint if they share no subobjects; an object is recursive if it contains other objects of the same object type.

- 20 -

hh

define type Person:
(

ssnum: int4,
name: char[],
street: char[20],
city: char[10],
zip: int4,
birthday: Date

)

define type Student:
(

gpa: float4,
dept: ref Department

)
inherits Person

define type Employee:
(

jobtitle: char[20],
dept: ref Department,
manager: ref Employee,
sub_ords: { ref Employee },
salary: int4,
kids: { own Person }

)
inherits Person

define type Department:
(

name: char[],
floor: int4,
employees: { own unique ref Employee }

)

create Students: { own unique ref Student }
create Departments: { own unique ref Department }

Figure 6: A simple EXTRA database.

hh

be composed and nested arbitrarily. In addition, user-defined functions (written both in E and in EXCESS) and
aggregate functions (written in E) are supported in a clean and consistent way. A few examples should suffice to
convey the basic flavor of the language.

As a first example, the following query finds the names of the children of all employees who work for a
department on the second floor:

range of E is Employees
retrieve (C.name) from C in E.kids where E.dept.floor = 2

- 21 -

Our second example illustrates the use of an aggregate function over a nested set of objects. The following
query retrieves the name of each employee, and for each employee it retrieves the age of the youngest child among
the children of all employees working in a department on the same floor as the employee’s department.

range of EMP is Employees
retrieve (EMP.name, min(E.kids.age

from E in Employees
where E.dept.floor = EMP.dept.floor))

In this example, the variable E ranges over Employees within the scope of the min aggregate, and within the aggre-
gate it is connected to the variable EMP through a join on Employee.dept.floor. The query aggregates over
Employee.kids, which is a set-valued attribute. Here, age is assumed to be defined by a function that computes the
age of a Person from the current date and their birthday, so it is a virtual field of Person objects.

User-defined functions and procedures written in EXCESS are supported, and are handled uniformly in the
syntax (as illustrated by the use of the age function in the example above). Functions can be invoked using either
the syntax for denoting attributes (for functions defined on particular types) or the user-defined function syntax
(which is similar to the aggregate function invocation syntax shown in the previous example). EXCESS procedures
are invoked in a manner consistent with the EXCESS syntax for performing updates. Procedures differ from func-
tions in that functions return a value and have no side-effects, while procedures usually have side-effects and return
no value. Further details and examples are presented in [Care88].

6.3. The EXTRA/EXCESS System Architecture

The EXTRA/EXCESS environment will consist of a frontend process and a backend process, as illustrated in
Figure 7 (which is essentially an EXTRA/EXCESS-specific version of Figure 1). The frontend process parses a
query, converts it to an optimizable form, optimizes it, converts the optimized query to E, and sends this E program

to the backend for execution.12 The optimizer will be generated using the EXODUS Optimizer Generator. The
frontend also interfaces with the EXTRA/EXCESS data dictionary for processing data definition language requests,
performing authorization, etc. The data dictionary is itself designed as an EXTRA database, and thus will be stored
by the EXODUS Storage Manager like all other data. It is drawn separately in Figure 7 simply to clarify its func-
tion.

The backend process consists of several components. The E compiler compiles E code into executables
which contain calls to the EXODUS Storage Manager. There is also a loader to dynamically load compiled queries
into the E run-time system (ERTS). ERTS contains operator methods and access methods written in E by the DBE
as well as methods taken from the generic method libraries provided by EXODUS. The EXODUS Storage Manager
is also part of the backend, as it serves as the repository for persistent E objects; it is the only component of the sys-
tem which directly manipulates persistent data. Finally, the backend will send query results to the frontend for for-
matting and output.

7. SUMMARY AND CURRENT STATUS

In this paper we have described EXODUS, an extensible database system project aimed at simplifying the
development of high-performance, application-specific database systems. As we explained, the EXODUS model of
the world includes three classes of database experts — ourselves, the designers and implementors of EXODUS; the
database engineers, or DBEs, who are responsible for using EXODUS to produce various application-specific
DBMSs; and the database administrators, or DBAs, who are the managers of the systems produced by the DBEs.
In addition, of course, there must be users of application-specific DBMSs, namely the engineers, scientists, office
workers, computer-aided designers, and other groups that the resulting systems will support. The focus of this paper
has been the overall architecture of EXODUS and the tools available to aid the DBE in his or her work.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

12 We also plan to support precompiled queries, but their execution path is not shown in Figure 7.

- 22 -

hh

Query Tree

or File

To Screen

Formatter
Output

Results

Statistical Requests/Results

Checks
and Consistency

Authorization
Dictionary

Data

EXCESS

Executable Query

Operator Methods
Access Methods &

E Code

Compiler
E

Optimized

Generation
E Code

OptimizerTree Conversion
Parse TreeQuery

Parser

Storage
Manager

Backend

Process

Query Tree

Figure 7: The EXTRA/EXCESS system architecture.

hh

As we described, EXODUS includes one component that requires no change from application area to applica-
tion area — the Storage Manager, a flexible, low-level storage manager that provides concurrent and recoverable
access to storage objects of arbitrary size. In addition, EXODUS provides libraries of database system components
that are likely to be widely applicable, including various useful access methods and operator methods. The
corresponding system layers are constructed by the DBE through a combination of borrowing components from the
libraries and writing new components. To make writing new components as painless as possible, EXODUS pro-
vides the E database implementation language to largely shield the DBE from many of the low-level details of per-
sistent programming. E is also the vehicle provided for defining new ADTs, which makes it easy for the DBE to
write operations on ADTs even when they are very large (e.g., an image or voice ADT). At the upper level of the
system, EXODUS provides a generator that produces a query optimizer from a description of the available opera-
tions and methods. Finally, we described EXTRA/EXCESS, a next-generation data model and query language with
an object-oriented flavor that will drive further EXODUS developments.

An initial implementation of the EXODUS tools is basically complete, including all of the components
described here. A single-user version of the Storage Manager is running, providing excellent performance for both
small and large storage objects; work on versions, concurrency control, and recovery is underway. The implemen-
tation of the rule-based query optimizer generator was completed over a year ago, and it has been used to generate
most of a full relational query optimizer. The E compiler is coming along nicely, with virtually all of the language
features (except hints) working at this time; the E effort is currently focused on optimization issues (e.g., coalescing
storage manager calls and improving our implementation of generic classes). At SIGMOD-88 we demonstrated a

- 23 -

relational DBMS prototype that was implemented using the EXODUS tools, and we are now working on an initial
EXTRA/EXCESS implementation.

REFERENCES

[Andr87] Andrews, T., and Harris, C., "Combining Language and Database Advances in an Object-Oriented
Development Environment," Proc. of 1987 OOPSLA Conf., Orlando, FL, Oct. 1987.

[Astr76] Astrahan, M., et. al., "System R: A Relational Approach to Database Management," ACM Trans. on
Database Sys. 1, 2, June 1976.

[Atki87] Atkinson, M., and Buneman, O.P., "Types and Persistence in Database Programming Languages," ACM
Comp. Surveys, 19, 2, June 1987.

[Atki78] Atkinson, R., Liskov, B., and Scheifler, R., "Aspects of Implementing CLU," ACM National Conf.
Proc., 1978.

[Bane87] Banerjee, J., et. al., "Data Model Issues for Object-Oriented Applications," ACM Trans. on Office Info.
Sys. 5, 1, Jan. 1987.

[Bato84] Batory, D., and Buchmann, A., "Molecular Objects, Abstract Data Types, and Data Models: A Frame-
work," Proc. of the 1984 VLDB Conf., Singapore, Aug. 1984.

[Bato88a] Batory, D., "Concepts for a Database System Compiler," Proc. of the 1988 ACM Principles of Data-
base Sys. Conf., Austin, TX, March 1988.

[Bato88b] Batory, D., et al, "GENESIS: An Extensible Database Management System," IEEE Trans. on Software
Eng. 14, 11, Nov. 1988.

[Baye77] Bayer, R., and Schkolnick, M., "Concurrency of Operations on B-trees," Acta Informatica 9, 1977.

[Care86a] Carey, M., and D. DeWitt, "Extensible Database Systems," in On Knowledge Base Management:
Integrating Artificial Intelligence and Database Technologies, M. Brodie and J. Mylopoulos, eds.,
Springer-Verlag, 1986.

[Care86b] Carey, M., et al, "Object and File Management in the EXODUS Extensible Database System," Proc. of
the 1986 VLDB Conf., Kyoto, Japan, Aug. 1986.

[Care86c] Carey, M., et al, "The Architecture of the EXODUS Extensible DBMS" Proc. of the Int’l. Workshop on
Object-Oriented Database Sys., Pacific Grove, CA, Sept. 1986.

[Care87] Carey, M., and DeWitt, D., "An Overview of EXODUS," in [DBE87].

[Care88] Carey, M., DeWitt, D., and Vandenberg, S., "A Data Model and Query Language for EXODUS," Proc.
of the 1988 SIGMOD Conf., Chicago, IL, June 1988.

[Chou85] Chou, H.-T., and D. DeWitt, "An Evaluation of Buffer Management Strategies for Relational Database
Systems," Proc. of the 1985 VLDB Conf., Stockholm, Sweden, Aug. 1985.

[Clif85] Clifford, J., and A. Tansel, "On An Algebra for Historical Relational Databases: Two Views," Proc. of
the 1985 SIGMOD Conf., Austin, Texas, May 1985.

[Cloc81] Clocksin, W. and C. Mellish, Programming in Prolog, Springer-Verlag, New York, 1981.

[Cope84] Copeland, G. and D. Maier, "Making Smalltalk a Database System," Proc. of the 1984 SIGMOD Conf.,
Boston, MA, May 1984.

[DBE87] Database Engineering 10, 2, Special Issue on Extensible Database Systems, M. Carey, ed., June 1987.

[Dada84] Dadam, P., V. Lum, and H-D. Werner, "Integration of Time Versions into a Relational Database Sys-
tem," Proc. of the 1984 VLDB Conf., Singapore, Aug. 1984.

[Dada86] Dadam, P., et al, "A DBMS Prototype to Support Extended NF2 Relations: An Integrated View of Flat
Tables," Proc. of the 1986 SIGMOD Conf., Washington, DC, May 1986.

- 24 -

[Daya86] Dayal, U. and J. Smith, "PROBE: A Knowledge-Oriented Database Management System," in On
Knowledge Base Management: Integrating Artificial Intelligence and Database Technologies, M. Bro-
die and J. Mylopoulos, eds., Springer-Verlag, 1986.

[Feld79] Feldman, S., "Make — A Program for Maintaining Computer Programs," Software — Practice and
Experience 9, 1979.

[Forg81] Forgy, C.L. "OPS5 Reference Manual," Computer Science Technical Report 135, Carnegie-Mellon
Univ., 1981.

[Frey86] Freytag, C.F. and Goodman, N., "Translating Relational Queries into Iterative Programs Using a Pro-
gram Transformation Approach," Proc. of the 1986 ACM SIGMOD Conf., May 1986.

[Grae87a] Graefe, G., and DeWitt, D., "The EXODUS Optimizer Generator," Proc. of the 1987 SIGMOD Conf.,
San Francisco, CA, May 1987.

[Grae87b] Graefe, G., "Rule-Based Query Optimization in Extensible Database Systems," Ph.D. Thesis, Comp.
Sci. Dept., Univ. of Wisconsin, Madison, 1987.

[Gray79] Gray, J., "Notes On Database Operating Systems," in Operating Systems: An Advanced Course, R.
Bayer, R. Graham, and G. Seegmuller, eds., Springer-Verlag, 1979.

[Gutt84] Guttman, A., "R-Trees: A Dynamic Index Structure for Spatial Searching," Proc. of the 1984 SIGMOD
Conf., Boston, MA, May 1984.

[Hull87] Hull, R., and King, R., "Semantic Database Modeling: Survey, Applications, and Research Issues,"
ACM Comp. Surveys 19, 3, Sept. 1987.

[Katz86] Katz, R., E. Chang, and R. Bhateja, "Version Modeling Concepts for Computer-Aided Design Data-
bases," Proc. of the 1986 SIGMOD Conf., Washington, DC, May 1986.

[Kern78] Kernighan, B.W. and D.N. Ritchie, The C Programming Language, Prentice-Hall, Englewood Cliffs,
N.J., 1978.

[Klah85] Klahold, P., et al, "A Transaction Model Supporting Complex Applications in Integrated Information
Systems," Proc. of the 1985 SIGMOD Conf., Austin, TX, May 1985.

[Lecl87] Lecluse, C., et. al., "O
2
, An Object-Oriented Data Model," Proc. of the 1988 SIGMOD Conf., Chicago,

IL, June 1988.

[Lind87] Lindsay, B., McPherson, J., and Pirahesh, H., "A Data Management Extension Architecture," Proc. of
the 1987 SIGMOD Conf., San Francisco, CA, May 1987.

[Lisk77] Liskov, B., et al, "Abstraction Mechanisms in CLU," Comm. ACM 20, 8, Aug. 1977.

[Litw80] Litwin, W., "Linear Hashing: A New Tool for File and Table Addressing," Proc. of the 1980 VLDB
Conf., Montreal, Canada, Oct. 1980.

[Lohm88] Lohman, G., "Grammar-Like Functional Rules for Representing Query Optimization Alternatives,"
Proc. of the 1988 SIGMOD Conf., Chicago, IL, June 1988.

[Maie87] Maier, D., and Stein, J., "Development and Implementation of an Object-Oriented DBMS," in Research
Directions in Object-Oriented Programming,, B. Shriver and P. Wegner, Eds., MIT Press, 1987.

[Mano86] Manola, F., and Dayal, U., "PDM: An Object-Oriented Data Model," Proc. of the Int’l. Workshop on
Object-Oriented Database Sys., Pacific Grove, CA, Sept. 1986. Grove, CA, Sept. 1986.

[Mylo80] Mylopoulos, J., et. al., "A Language Facility for Designing Database-Intensive Applications," ACM
Trans. on Database Sys. 5, 2, June 1980.

[Nguy82] Nguyen, G.T., Ferrat, L., and H. Galy, "A High-Level User Interface for a Local Network Database
System," Proc. of the IEEE Infocom Conf., 1982.

[Niev84] Nievergelt, J., H. Hintenberger, H., and Sevcik, K.C., "The Grid File: An Adaptable, Symmetric Multi-
key File Structure," ACM Trans. on Database Sys. 9, 1, March 1984.

- 25 -

[Peck88] Peckham, J., and Maryanski, F., "Semantic Data Models," ACM Comp. Surveys 20, 3, Sept. 1988.

[Rich87] Richardson, J., and Carey, M., "Programming Constructs for Database System Implementation in
EXODUS," Proc. of the 1987 SIGMOD Conf., San Francisco, CA, May 1987.

[Rich89a] Richardson, J., and Carey, M., "Implementing Persistence in E," Proc. of the Newcastle Workshop on
Persistent Object Sys., Newcastle, Australia, Jan. 1989.

[Rich89b] Richardson, J., and Carey, M., "The Design of the E Programming Language," Tech. Rep., Computer
Sciences Dept., Univ. of Wisconsin, Madison, Jan. 1989.

[Robi81] Robinson, J.T., "The k-d-B-tree: A Search Structure for Large Multidimentional Dynamic Indexes,"
Proc. of the 1981 SIGMOD Conf., June 1981.

[Rowe79] Rowe, L. and K. Schoens, "Data Abstraction, Views, and Updates in RIGEL, Proc. of the 1979 SIG-
MOD Conf., Boston, MA., 1979.

[Rowe87] Rowe, L., and Stonebraker, M., "The POSTGRES Data Model," Proc. of the 13th VLDB Conf., Brigh-
ton, England, Aug. 1987.

[Sche86] Schek, H.-J., and Scholl, M., "The Relational Model with Relation-Valued Attributes," Information
Sys., 11, 2, 1986.

[Schm77] Schmidt, J., "Some High Level Language Constructs for Data of Type Relation," ACM Trans. on Data-
base Sys. 2, 3, Sept. 1977.

[Schw86] Schwarz, P., et al, "Extensibility in the Starburst Database System," Proc. of the Int’l. Workshop on
Object-Oriented Database Sys., Pacific Grove, CA, Sept. 1986.

[Ship81] Shipman, D., "The Functional Data Model and the Data Language DAPLEX," ACM Trans. on Data-
base Sys. 6, 1, March 1981.

[Snod85] Snodgrass, R., and I. Ahn, "A Taxonomy of Time in Databases," Proc. of the 1985 SIGMOD Conf.,
Austin, TX, May 1985.

[Ston76] Stonebraker, M., Wong, E., and Kreps, P., "The Design and Implementation of INGRES," ACM Trans.
on Database Sys. 1, 3, Sept. 1976.

[Ston81] Stonebraker, M., "Hypothetical Data Bases as Views," Proc. of the 1981 SIGMOD Conf., Boston, MA,
May 1981.

[Ston83] Stonebraker, M., et al, "Document Processing in a Relational Database System", ACM Trans. on Office
Info. Sys. 1, 2, April 1983.

[Ston85] Stonebraker, M., personal communication, July 1985.

[Ston86a] Stonebraker, M., "Inclusion of New Types in Relational Data Base Systems," Proc. of the 2nd Data
Engineering Conf., Los Angeles, CA., Feb. 1986.

[Ston86b] Stonebraker, M., and L. Rowe, "The Design of POSTGRES," Proc. of the 1986 SIGMOD Conf., Wash-
ington, DC, May 1986.

[Stro86] Stroustrup, B., The C++ Programming Language, Addison-Wesley, Reading, MA, 1986.

[Ullm82] Ullman, J.D., Principles of Database Systems, Computer Science Press, Rockville, MD., 1982.

[Verh78] Verhofstad, J., "Recovery Techniques for Database Systems," ACM Comp. Surveys 10, 2, June 1978.

[Zani83] Zaniolo, C., "The Database Language GEM," Proc. of the 1983 SIGMOD Conf., San Jose, CA, May
1983.

- 26 -

