
at the log record whose LSN is the jlrstLSN determined by
Analysis and scans forward. To redo an update, the logged action

is re-applied and the pageLSN on the page is set to the LSN of the
redone log reeord. No logging is performed as the result of a

redo. A logged action must be redone if its LSN is greater than

the pageLSN of the affected page. To avoid unnecessary disk 1/0,

the pagelXN is not checked if the page is not in the DF’T, or if the

recoveryLSN for the page is greater than the record LSN.

3.4. Undo

The Undo pass scans backwards from the end of the log,

removing the effects of all transactions that had not committed at

the time of the crash. In ARIES, undo is an unconditional opera-

tion — the pageLSN of an affected page is not checked because it
is always the case that the undo must be performed. To undo an
update, the undo operation is applied to the page and is logged

using a Compensation Log Record (CLR). In addition to the undo

information, a CLR contains a UndoNxtLSN field, which is the

LSN of the next log record that must be undone for the transac-
tion. It is set to the vahre of the prevLSN field of the log record

being tmdone. CLRS enable ARIES to avoid ever having to undo

the effects of an undo (e.g., due to a crash during an abort) thereby

limiting the amount of undo work and bounding the amount of

logging done in the event of multiple crashes. When a CLR is
encountered during Undo, no operation is performed on the page,
and the value of the UndoNxtLSN field is used as the next log
record to be undone for the transaction, thereby skipping any pre-
viously undone updates of the transaction.

For example, in Figure 3, a transaction logged three updates

(LSNS 10,20, and 30) before the system crashed for the first time.

During Redo, the database was brought up to date with respect to

the log, but since the transaction was in progress at the time of the

crash, it must be undone. During the Undo pass, update 30 was

undone, resulting in the writing of a CLR with LSN 40, which

contains an UndoNxLSN value that points to 20. Then, 20 was

undone, resulting in CLR (LSN 50) with an UndoNxtLSN value of
10. However, the system then crashed for a second time before 10
was undone. Once again, hk.tory is repeated during Redo, which

brings the database back to the state it was in after the application
of LSN 50 (the CLR for 20). When Undo begins during this

second restrtrg it will first examine the log record 50. Since the

record is a CLR, no modification will be performed on the page,

and Undo will skip to the record whose LSN is stored in the

UndoNxtLSN field of the CLR. Therefore, it will continue by

undoing the update whose log record has LSN 10. This is where

Undo was interrupted at the time of the second crash. Note that

no extra logging was performed as a result of the second crash.

In order to undo multiple transactions, restart Undo keeps a list

containing the next LSN to be undone for each transaction being
undone. When a log record is undone, the prev.LYN (or

UndoNxtLSN, in the case of a CLR) is entered as the next LSN to

be undone for that transaction and Undo moves on to the log
record whose LSN is the most recent in the list. Undo continues

until all of the transactions in the list have been completely
undone. Undo for transaction rollback (for transaction aborts or
savepoints) works si.rn&wly to restart Undo.

4. RECOVERY IN ESM-CS

4.1. ARIES and the Page-Server Environment

In thii sectio~ we describe the problems that arise when
adapting ARIES to a page-server environment and outline the
solutions that we implemented. These issues stem mainly from

two features of the page-server enviromnenc 1) the modification

of data in client database buffers, while the log and recovery

manager are at the server, and 2) the expense of communicating

between the clients and the server. The first issue violates several

important assumptions of the ARIES algorithm, and thus had to
be addressed for correcmess of the implementation. The second

issue results in performance tradeoffs that have a significant

impact on the algorithm design.

Write Write
‘rite $f#% CL, , Lx 20 &z MN 10“ ‘0’ CLR ‘0’ @* CL’ ‘0’

page 1 page 1 page 1

jr, (#..w..ff.T.~tl~&;}'`"'`"`"""""i...".."."""""+"'-""'""'-"""'`- ‘“””””””””” ~

rswi 10 20 30

Figure 3: The Use of CLRS for Undo

The presence of separate buffers on the clients is a fundamen-
tal departure from the environment for which ARIES was origi-

nally specified. This difference creates problems with both tran-

saction rollback and system restart. In ARIES, rollback undo is

an unconditional operation since it is known that at rollback, the

effects of all logged updates appear in the copies of pages either

on stable storage or in the server’s buffer pool. However, in the

page-server environment the server can have log records for

updates for which it does not have the affected databare pages.

During rollback, unconditional undo could result in cornsption of

the database and system crashes due to attempts to undo opera-
tions that are not reflected in the server’s copy of a page.

Thk difference in buffering also causes a related problem for

system restart. The correctness of the restart algorithm depends

on the ability to determine all pages that could have possibly been

dirty (i.e., different from their copy on stable storage) at the time

of a crash. As described in Section 3.2, this information is gath-

ered by starting with the DPT that was logged at the most recent

checkpoint, and augmenting it based on log records that are

encountered during the Analysis pass. In a page-server systcm,

this process is not sufficient, since rhere may be pages [ha are
dirty at a client but not at the server, and hence, do not appear in

any checkpoint’s DPT. This problem, if not addressed, would
result in incorrect recovery due to the violation of the repeating

history property of Redo.

A problem that arises due to the expense of communication

between clients and the server is the inability of clients to

efficiently assign LSNS. ARIES expects that LSNS are unique

within a log, and that log records are added to the log in monoton-

ically increasing LSN order. In a centralized or shared memory

system, thk is easily achieved, since a single source for generating

LSNS can be cheaply accessed each time a log record is generated.

However, in a page-server environmen~ clients generate log

records in parallel, making it difficult for them to efficiently

assign unique LSNS that will arrive at the server in monotonically

increasing order. Furthermore, if the LSNS are to be physical

(e.g., based on log record addresses), then the server would be
required to be involved in the generation of LSNS.

To summarize, the issues that must be addressed in a pagc-

server environment are the following:

. The assignment of state identifiers (e.g., LSNS) for pages.
● The need to make undo a conditional operation.
● Changes to Analysis to ensure correctness.

We next describe these issues and their effecls on the algo-

rithm. The algorithm is then summarized in Section 4.5.

4.2. Log Record Counters (LRCS)

As described in Section 3, ARIES requires that each log record

be identified by an LSN and that each page contain a pageLSN

field which indicates the LSN of the most recent log record

168

applied to that page. These LSNS must be unique and monotoni-

cally increasing. It is useful for LSNS be the physical addresses of

records in the log. However, as discussed above, it is not possible

to efficiently generate such LSNS in a page-server system. In gen-
eral, the problem with LSNS in a page-server system is that their

use is overloadetk 1) they identify the state of a page with respect

to a particular log record, 2) they identify the state of a page with

respect to a position in the log (e.g., an LSN is used to determine

the point from which to begin Redo for a page), and 3) they iden-

tifi wherein the log to find a relevant record.

Since clients do not have inexpensive access to the log, they
can only be responsible for point 1 above. Therefore, our solution

was to separate the functionality of point 1 from the others by

introducing the notion of a Log Record Counter (LRC). An LRC

is a counter that is associated with each page. The LRC for u par-
ticular page is monotonically increasing and uniquely identifies

an operation that has been applied to the page. Instead of storing

an LSN on the page, we store the LRC (called the pageLRC). In

order to map between LRCS and entries in the log, the log record

stxucture is augmented to include an LRC field which indicates the

LRC that was placed on the page as a result of the logged opera-

tion. Note that for reasons to be explained in the following sec-

tions, LRCS have the same size and structure as LSNS (currently,

an eight-byte integer).

LRCS are used in the following way: When a page is modified,
the LRC on the page (pugeLRC) is updated and then copied into

the corresponding log record. When the server examines a page

to see if a particular update has been applied to the page, the
current pageLRC is compared to the LRC contained in the log
record corresponding to the modification. If the pageLRC is

greater than or equal to the LRC in the log record, then the

update is known to be reflected in the page. LRCS have the

advantage that, since they are private to a particular page, they can

be manipulated at the client without intervention by the server.

There are two main disadvantages of using LRCS however. First,

since they are not physical log pointers, they camot be diredy

used to serve as an access point into the log. Second, care must be

taken to insure that each combination of page id and LRC refers to

a unique log record. Our approaches to handling these two prob-

lems are addressed in the following sections.

4.3. Conditional Undo

In ESM-CS, log records for operations performed on clients

arrive at the server before the dirty pages containing the effects of

those operations, and thus, when aborting a transaction it is possi-

ble to encounter log records for operations whose effects are not

reflected in the pages at the server. Attempting to undo such an

operation could result in corrupted data. Therefore, we implement

undo as a conditional operation. When scanning the log back-
wards during rollback (or restart Undo) the page associated with

each log record is examined and undo is performed only for
logged operations that had actually been applied.

As described in Section 3.4, undo in ARIES is an uncondi-
tional operation. This is possible in ARIES for two reasons.

F~st, in ARIES all dirty pages are located in the system’s buffer

pool, so at the rollback-time, all logged operations are reflected in

the pages at the server. Second, history is always repeated during
restart Redo. Therefore, it is assured that all of the operations up
to the time of the crash are reflected in either the pages on stable

storage or in the buffer pool when restart Undo begins.

With conditional undo, CLRS must still be written for all undo

operations, including those that are not actually performed. How-

ever, the pageLRCs of the affected pages must not be updated
unless the undo operation is actually performed. The reasons for
these requirements can be seen in the example shown in Pigure 4.

In the figure, a transaction logged three updates (LRCS 10,11 and

12) for a page, and the page was sent to the server after the first

update had been applied but before the others had been applied.
When the transaction rolls back, conditional undo results in only

LRC 10 being undone. If only the CLR pertaining to that update

is written, a problem can arise if the server crashes after logging
the CLR but before the page reflecting the undo is written to

stable storage (as shown in the figure). Restart Redo repeats his-

tory, thereby redoing LRCS 10, 11, 12 and the CLR. The Undo

pass encounters the CLR, and since the UndoNxtLSN is NIL, con-

siders the transaction completely undone. This incorrectly leaves

the effects of LRCS 11 and 12 on the page. Therefore, rollback
must log CLRS for the second and third updates as well, even

though the updates were never applied to the page. However, if

the pageLRC is updated when the fake undo is performed for LRC

12, then rollback would not work properly since when it
encounters the log record for LRC 11, it would erroneously infer

that the update had been applied to the page and would attempt to

undo the update, resulting in a corrupted page.

Write Write write
yz~

f

cLR FOR ~~~,

d

q

...YYyQ{l ~~~~~--.k{.m -)
Checkpoint lo

LRc 11
12 Rollback 500 Restart

,& MULOR ‘.,,
Lm: 200 300 400 ~ 500 , Effact# of ‘,,

f------ -’;~urc. 11 * 12 ~
EwSl SU .,

!;; g :; ~ \$yp:;:l ./~1
client i 1

LRC=5\ Lw=lo \ LRc.11 \ LRL2.12 !SAv...q(!(!...! ‘%............-””
Bufler , ,

~
1

t

sewer

BuNer
LRC.5 IRc.lo j LRC=500● *O

n
LRC=500

Stable

Storage LRc=s { LRC=500 I
Figure 4: Error Due to Missing CLRS in Conditimtal Undn

Up to this point, the solution described is to log undo opera-

tions, even if they are not performed, but not to update the LRC

on the page unless an undo is actually pcrforrncd on the page.

Unfortunately, there is one additional complication that is duc m

the use of LRCS rather than LSNS. The problem is that in the case
where no logged updates to a page are truly undone, the value of

the pageLRC will still be less than some of the LRCS in the log

records of the rolled-back transaction. If this pageLRC is simply

incremented by updates in subsequent transactions, there will then

be values of the pageLRC that map to multiple log records. This

is a violation of an important invariant and can result in problems

in both Redo and Undo.

The above problem could not occur if LSNS were being used,

since they are gtumnteed to be unique and monotonically increas-

ing, makhtg it impossible to generate a duplicate LSN. This prob-
lem is solved by taking advantage of the fact that, while LRCS

must be unique and monotonically increasing for a page, they
need not be consecutive. The solution requires that the server
send the LSN of the current end-of-log (i.e., the LSN of the next

log record to be written) every time it sends a page to a client. It
does this by piggybacking the end-of-log LSN in the message

header. When the client receives a data or index page from the

server, it initializes the pageLRC field of the received page to be

the end-of-log LSN that is sent along with the page. When a

client updates a page, it increments the pageLRC on the page.
When the server updates a page (e.g., for page formatting, com-

pensation for undo, etc.) it places the LSN of the corresponding

log record in the page’s pageLRC field. The resulting pageLRCs

are guaranteed to be unique and monotonically increming (but not
necessarily consecutive) with respect to each page.

169

4.4. Performing Correct Analysis during Restart

The remainiig issue to be addressed is to ensure that the

Analysis pass of system restart produces the correct information
about the state of pages at the time of a crash. There are three

related problems to be solved in this regard

(1) Maintaining recoveryLSNs for dirty pages.

(2) Determining g which pages may require redo.

(3) Determining the point in the log at which to start Redo.

4.4.1. Maintaining the RecoveryLSN for a Page

During the Analysis pass of the restart algorithm, ARIES com-

putes the LSN of the earliest log record that could require redo.
As explained in Section 3.2, this LSN, called the jirstLSN, is com-

puted by taking the minimum of the recoveryLSNs of all of the

pages considered dirty at the end of Analysis. In a centralized

system, the recoveryLSN for each page can be kept by storing the

LSN of the update that causes a page to become dirty in the buffer
pool control information for that page. Unfortunately, in the

page-server environmen~ clients do not have access to the LSN of

an update’s corresponding log record when the update is per-

formed (for the reasons described previously).

This problem is solved by having clients attach an approxi-
mate recoveryLSN to a page when they initially dkty the page. To

implement thk, we extend the mechanism described in Section

4.3 so that the server piggybacks the LSN of the current end-of-

log on every reply that it sends to a client. When a client initially

dirties a page, it attaches the most recent end-of-log LSN that it

received from the server, as the recoveryLSN for the page. This

LSN is guaranteed to be less than or equal to the LSN of the log

record that will eventually be generated for the operation that
actually dirties the page. Since the client must communicate with
the server in order to initiate a transaction; and since clients must
send dkty pages to the server on commit; the approximate

recoveryLSN will be no earlier than the end-of-log LSN at the

time when the tmnsaction which dities the page was initiated.

Typically, it will be more recent than this. When the client returns
a duty page to tlhe server, it sends the approximate recoveryLSN

for the page in the message along with the page. If the page is not

already considered dirty at the server, then it is marked dirty and

the approximate recoveryLSN is entered in the buffer pool control

information for the page at the server.

4.4.2. Determining Which Pages May Require Redo

As described above, a fundamental problem with implement-
ing the ARIES algorithm in the page-server environment is the

presence of buffer pools on the clients, One manifestation of this
difference is the problem of determining which pages were dirty
at the time of a mash, and hence may require redo. A page is rrot
considered d~ty by the basic ARIES Analysis algorithm if it

satisfies both the following criteria

(1) It does not appear in the DPT logged in the most recent

complete checkpoint prior to the crash.

(2) No log records for updates to the page appear in the log
after that checkpoint.

There are two reasons that a page updated at a client might not

appear in the checkpoint’s DPT. The first is simply that the page
was sent back to the server and written to stable storage before the

checkpoint was taken. This causes no problems since the page is

no longer dirty at this point. The second reason is that the page
may have been updated at the client but not sent back to the server

prior to the taking of the checkpoint. (Note that even if the page is
sent to the server after the checkpoint has been taken, it will be

lost during the crash.) In this case, there may have been log

records for updates to the page that appeared before the check-

point. These updates will be skipped by the Redo pass because it

will not consider the page to be dirty.

Figure 5 shows an example of this problem. In the figure, a

transaction updated a page (page 1) and sent the corresponding

log record (LRC 10) to the server without sending the page to the

server. After a checkpoint had occurred the client sent the dirtied

page (with LRC = 10) to the server followed by a commit request.
The server wrote a commit record and forced it to disk, thereby

committing the transaction. The server then crashed before page

1 was flushed to disk. In this case, Restart will not redo LRC 10
because according to the ARIES Analysis algorithm, page 1 is not

considered dirty (since it neither appears in the most recent

checkpoint’s DPT, nor is referenced by any log records that

appear after the checkpoint), and therefore, does not require redo.

Thk would violate the durability of committed updates since the

update of LRC 10 would be lost.

Write
page 1 Transaction

Log(lime -) I 1 t’
LRC. 10 Checkpdnl . .

LSN :

Res@.rt

200 300
Y=- 1 Stti ERROR “...,

Client
I

LRC=5 : LRc=lo ! Update fox j

Buffer NOT Dirtv! Dirty
{

“’....A:+:;F””\.....””

Server LRC=5
1

LRc=lo
Buffer NOT Dirty Dirty

1

Stable

Storage LRC=5

Figure 5: Lost Update Due to Missed Dirty Pages

Fortunately, the problem of missed dirty pages only has

correctness implications for updates of transactions Lhat commi I
before the system crashes. The reason for this is that the updates
of any transactions which had not committed prior to the crash

will be undone during the Undo pass of restart. The conditional

undo of our algorithm (Section 4.3) can tolerate the absence of the

effects of logged updates on a page, providing that all of the miss-

ing updates occur later in the log than any updates that were

applied to the page. That condition holds in this case, since the
problem arises only when the most recent image of the dirty page

was lost during the crash.

Given that the problem of missing dirty pages arises only for
committed transactions, we solve the problem by logging dirty

page information at transaction commit time. When a client sends

a dirty page to the server, this page and its recoveryL.SN are added

to a list of dirty pages for the transaction. When a page is flushed
to stable storage, it is removed from the list. We refer to this list as

a Commit Dirty Page List. Before logging a commit record for a
transaction, the server first logs the contents of the list for the

committing transaction. During restart Analysis, when a Commit
Dirty Page List is encountered, each page that appears in the list is

added (along with its recoveryLSN) to the DPT if it does not

already have an entry in the table.

An alternative solution we considered was to log the receipt of
dirty pages at the server (similar to the logging of buffer opera-

tions in [Lmd79]), and then during restart Analysis, to add pages
encountered in such log records to the dirty page table. While this

solution is also a correct one, we felt that the additional log over-

head during normal operation could prove to be unacceptable,

We also investigated solutions that involved the clients in the

checkpointing process, These solutions were rejcctcd bccausc
they violate a system design constraint which prohibits the server

from depending on clients for any crucial functions.

170

4.4.3. Determining Where to Begin the Redo Pass

The final problem to be addressed in thk section is that of

determining the proper point in the log at which to begin Redo.

Recall that in ARIES, the LSN at which to begin Redo (called the

jir.rtLSN) is determined to be the miniium of the recoveryLSNs of

all of the pages in the DPT at the end of the Analysis phase. If a

page is not dirty at tbe time of a checkpoint, then it is known that

all updates logged prior to the checkpoint are reflected in the copy
of the page that is on stable storage, and thus, it is safe to begin

Redo for the page at the first log record for the page that is
encountered during Analysis, or anywhere earlier. In the page-

server environment, however, this is not the case. For example, in

Figure 6, a transaction logged two updates to page 1. One log

record arrived at the server before a checkpoint, and one arrived

after the checkpoin~ and the d~ty page containing the effects of

the updates was not shipped to the server until after the check-
point. Therefore, page 1 does not appear in the DPT recorded in

the checkpoint. If the server crashes at the point shown in the

figure, then during Analysis, when the log record for LRC 11 is

encountered page 1 will be added to the DPT with the LSN of

that record as its recoveryLSN (LSN = 300). Starting Redo for

page 1 at this point would result in LRC 11 being redone without

LRC 10 having been applied, thus corrupting page 1,

Write Write

LOg(um -)
page 1 page 1

I I
v r A

.

LRC 10 che&pOin[11

LsN 200 300 R-’Qr\l

\ Atte?@ to ~

Client LRC-5 I LRC-1 O
: ~~.~~ ~ IJ&=ll i..Ed.O.. v.m~

Buffer NOI Dirty i Dirty ; Ditiy : ~

Server LRC-5 LRC-11

!’*V b

LRC-5 ~

Buffer
NOT

NOT Ditiy : Dirty
i rt

~ERROR

Stabk

Storage LRC=5

Figure 6: Inconsistent Redo Due to Missed Log Record

For pages that are dirtied by a transaction that eventually com-

mits, the Commit Dirty Page Lkt (as described in Section 4.4.2)

contains conservative recoveryLSNs, which insure that redo will

begin at a proper point in the log for such pages. Also, for pages

dirtied by a transaction which does not commi~ but that appear in

the DPT recorded in the most recent checkpoint, the recoveryLSN

in the DPT entry is valid, Therefore, the problem that must be

addressed is that of pages dirtied by a transaction which does not

commit and that are added to the DPT during Anafysis (as shown

in Figure 6). To solve this problem, we augment the Transaction

Table structure (described in Section 3.2) to include a field for the

first LSN generated by each transaction (called the .rtm-tLSN).

Then, during Analysis, when a page is added to the DPT, it is
marked as a newly added page and tagged with the transaction Id

of the transaction which dirtied it. At the end of Analysis, entries

for pages that were added to the dirty page table due to an update

by an uncommitted transaction have their recoveryLSN replaced

by that transaction’s stari+.$N. Thk conservative approximation

results in correct behavior, but it may cause extra I/O during Redo

because pages may have to be read from stable storage to deter-

mine whether or not a logged update must be redone. However,
the number of pages for which this conservative approximation is

required can be kept small by taking (inexpensive) checkpoints.

4.5. Summary of the Algorithm

Mile the preceding discussion was fairly detailed, the result-
ing algoridurr requires only the following changes to ARIES:

During Normal Operation:
.The LSN of the first log record generated by a, transaction is

entered in the Transaction Table as the transaction’s srartLSN.
● Each client keeps an estimate of the current end-of-log LSN,

updated upon receipt of every message from the server.
● When a data or index page arrives at the client, the pageL.RC of

the page is initialized to be the estimated end-of-log LSN. The

page is notmarked dirty as a result of this initialization.
● When a client updates a page, it increments the pageLRC on the

page and places the new pageLRC value in the log record. If
this update causes the page to be marked “dirty”, the current

estimated end-of-log LSN is entered as the recoveryLSN in the

page’s buffer control information at the client.

● When the server tqxiates a page, it places the LSN of the log

record it generates as the pageLRC on the page and in the log

record. If this update causes the page to be marked “dirty”,

then the LSN is also entered as the recoveryLSN in the page’s
buffer control information at the server.

● When a client sends a dkty page to the server it includes the

page’s recoveryLSN in the message.
● When the server receives a dkty page from a client, the page is

added to a list of dirty pages for the transaction which dirtied it.

If the transaction commits, this list is logged as the Commit

Dirty Page Lkt for the transaction.

During Restart Analysis:
● When a transaction is added to the Transaction Table as the

result of encountering a log record the LSN of the log record is

entered as the transaction’s startLSN.
● When a Commit Dirty Page List is encountered, the pages that

appear in it are added to the DPT. The recoveryL.SN in the

DPT en~y for each page is set to the minimum of the

recoveryLSN for the page in the DPT (if the page already has

an entry) and that in the Commit Dirty Page List.
● At the end of Analysis, all pages that were added to the MT by

Analysis due to log records generated by non-committing tran-

sactions are given a conservative recoveryLSN: namely, the

startLSN of the transaction that dirtied the page.

During Restart Redo:
● Redo is unchanged except for the use of LRCS for comparisons

between log records and pages rather than LSNS.

During Undo (for restart or rollback):
● To undo a log record, the LRC stored in the record is compared

to the pageLRC of the affected page. If the log record LRC is

greater than or equal to the pageLRC then an actual undo is

performed, otherwise a “fake” undo is performed.
● Actual undo is performed by logging a CLR for the undone

operation, performing the undo on the page, and placing the

LSN of the CLR in the pageLRC of the affected page.

● Fake undo is performed simply by logging a CLR for the undone
operation. The page itself is not modified, is not marked as
dirty, and its pageLRC is not changed.

5. PERFORMANCE

In this section we describe an initial study of the performance

of logging and recovery in ESM-CS. The performance experi-

ments described in this section were run on two SPARCstation

ELCS, each with 24MB of memory, ruining version 4.1.1 of
SunOS. The client and server processes were run on separate
machines that were comected by an Ethernet. The log and data-

base were stored on separate disks, and raw disk partitions were
used to avoid operating system buffering. The log page size was

8KB and database page size was 4KB. AH times were oblaincd

using gettimeofdayo and getrusageo and are reported in seconds.

171

5.1. Logging Experiments

In the first set of experiments we investigated the overhead

im~sed on transactions by the logging subsystem during normal
operation. Three different databases were used for the experi-

ments and are described in Table 1. All three databases initially
contain 2MB of data on pages that are approximately sf)~o full,

and thus, each database consists of 4MB of physical space. We
describe the results for two types of transactions applied to the

three databases: Write, which sequentially scans the database and

writes (updates) half of the bytes in each objec~ updating a total

of lMB of data, and Insert, which sequentially scans the database

and inserts new data at the beginning of each object to increase its

size by 50’%, resulting in the insertion of lMB of new data. Insert

does not increase the number of pages in the database since each

page has enough free space to accommodate the inserted data. 1

DB Objects Obj. Size Objs Pages in

Name in DB (bytes) per page DB

i-ewLg 1,000 2000 1 1000
SomeMd 10,000 ’200 10 1:000
ManySm 100,000 20 100 1,000

Table 1: Description of Experimental Databases

Experiment Execution Time (see) Logging

name Logging Logging overhead

on off

Write_SomeMd

Write_ManySm 32.32 21.36 10.96 (51%)

Insert_FewLg 14.29 12.49 1.80 (14%)

Insert_SomeMd 15.74 13.05 2.69 (21%)

Table 2: Logging Experiment Results (seconds)

Table 2 shows the results from running the five experiments
with and without logging, These numbers were obtained by run-

ning each transaction five times and takiig the average of the last

four runs. They include the time to initiate, execute, and commit

a transaction, including the time to send dirty pages to the server.

In these experiments the server buffer pool was 5 Mbytes, so the

entire database was cached in the server’s buffer pool for the

measured runs. The client buffer pool is also 5 Mbytes so that the

entire database tits in the client buffer pol during a transaction,
however, it is empty at the beginning of each transaction. The
large buffer pools were used to in order to help us isolate the

effects of logging by removing sources of variability (e.g., other

disk I/0) and by making logging a more significant part of the

totaf work performed in the tests. The write-intensiveness of the

transactions also accentuates the impact of logging. For these rea-

sons, the overhead of logging reflected in Table 2 is much higher

than would be expected in an actual application.

As shown in Table 2, the overhead of logging increased with
the number of operations for which log records were generated

even though the amount of actual data that was updated remained
constant. This increase was due to the size overhead added for
each log record. In ESM-CS, this overhead is 64 bytes — 56

bytes for the record header and 8 bytes for the operation informa-
tion. As a result of this overhead, the number of log pages gen-

erated and written increased considerably when a larger number

1This does not hold for the ManySm database due to the overhead

of object headers, thus we do not show rhe results from running lnserf on

the ManySm database.

of smaller operations were performed per transaction. For exam-
ple, the 1,000 operations of the Write_FewLg experiment gen-

erated 2.7MB of log records in 337 log pages, while the 100,000

operations of the Write_ManySm experiment generated 8.9MB of

log records in 1,090 log pages. Comparirtg the two transaction

types, the logging time overhead of the Inrert tests was less than

that of the Write tests. Thk difference is because Insert logs only

the inserted data, while Write logs both the before and after

images, resulting in a larger volume of logged data for Wri[e.

Experi- Gen. Ship Write Total

ment log log pages log pages overhead

name recs act/obsv act/obsv act/obsv

Write

FewLg 0.48 2.57]2.45 6.18/0.78 9.23/3.71

SomeMd 0.92 2.57/2.03 6.18/0.87 9.67/3.82

ManySm 5.19 8.37/4.24 20,36/1.35 33.92/10,78

Insert

FewLg 0.31 1,10/1.05 3.03/0.26 4.44/1 .62

SomeMd 0.89 1.57/1.23 3.75/0.44 6.21/2.56

Table 3: Logging Cost Breakdown (seconds)

60, Time Logging Cost

50

40
0
u

; 30

E.“

b 20

10

0

Figure 7: Actual and Observed Logging Costs

In order to better understand these results, we analyzed the
costs of the three main components of logging: 1) generating log

records at the client, 2) shipping log pages from the client to Lhc
server, and 3) writing log pages from the server’s buf fcr to lhc log

disk. To obtain this breakdown we altered ESM-CS to allow

these three logging components to be selectively turned on and

off. Because the shipping and writing of log pages can occur in

parallel with other client and server activity, these costs were

measured in two ways. The first was to separately measure the

actual time it took to ship or write a certain number of pages. The
second was to selectively turn off the shipping and writing of log

pages and compute the differences in time observed by the client.
These results are shown in Table 3 (and graphically in Figure 7)
as actual and observed respectively. As would be expected, the

highest actual cost was the writing of log records to disk. Ship-
ping the log pages to the server took about 41 % of the time it took

to write the pages to disk. The cost of generating the log records

was small in the FewLg cases but became more significant in the

transactions that generated more log records, as the number of log

records generated grew faster than the number of log pages.

From the client’s point of view, the observed cost of shipping
was more significant than the writing cost since most of the writ-

ing was performed in parallel with other client and server activity.

172

In principle, the shipping of log pages can also be performed in

parallel with other activity, but with the small compute time of

these tests, the network was kept busy by client data page and

lock requests. One exception to this was the Write_ManySm case
which had more significant compute time due to the generation of

log records, and thus obtained some parallelism between log page
shipping and log record generation.

Although comparable published performance results for log-

ging systems are difficult to find the results from these wnte-

intensive experiments lead us to conclude that the performance of

our inh.ial logging implementation is reasonable. The results also

indicate two weas for improvement. First, reducing the amount of

logged information can result in significant performance improvem-

ents, especially for small updates. The current log record over-

head size of 64 bytes is slightly larger than the typical log record

header size of approximately 50 bytes [GR92]. With sufficient
coding effor~ the ESM-CS log record overhead could be reduced

to 56 bytes (but not much smaller). A different approach would
be to reduce the number of log records generated in special cases

like Write_ManySm (where most or all of the objects on a page

are updated) by logging entire pages. Secondly, by performing
shipping and writing of log pages in parallel with other activity,

the observed cost for logging can be reduced considerably. We

plan to investigate ways of further exploiting such parallelism.

5.2. Transaction Rollback and Recovery Performance

We also ran some simple experiments to gain insight into the

performance of rollback and recovery. These experiments used

the databases and Write transactions described in the previous sec-
tion. Table 4 shows the results of these experimen~ and also

shows the execution times of the transactions with logging turned
on (from Table 2) for comparison. To measure the cost of trart-

saction rollback we aborted each transaction after all the dirty

pages and log records had been shipped back to the server, In this
experiment, rollback did not perform arty 1/0 for data pages since

the database was cached in the server buffer, and thus, the transac-

tion rollback results were primarily determined by the time to read

the log, to generate compensation log records, and to write those

log records to dkk. The cost of actually performing the undo

operations was only several seconds in the longest case. Compen-

sation log records for write operations only require the logging of

redo infonnatio~ so CLRS for writes contain only half as much

operation information as normal write log records. However, the

fine granularity of the updates in the Write_ManySm case results

in much of the log space being used for log record headers.

Therefore, while undoing the Write_FewLg case generated about
half as many log pages as the original transaction, undoing the

Write_ManySm case required almost as much log space as the

original transaction. The generation of CLRS also results in

significant log disk arm movement, as these new records must be

appended to the log while rollback is trying to scan the log back-

wards. Disk arm movement is especially expensive in the
Write_ManySm case, due to the amount of compensation log

space generated. A way to reduce dkk arm movement is to batch

newly written log pages and write them out in groups.

For restart, Table 4 shows the Analysis and Redo tiies when

the server was crashed immediately after the transaction commit-
ted. Since the server buffer could hold the entire database, no data
pages had been written to stable storage prior to the crash, and
thus, all data pages had to be reread from disk during recovery.

The restart tests showed a significant increase in the cost of

Analysis and Redo as the volume of log data increased. Note that

no checkpoints were taken during these tests, so Analysis scanned

the entire log. The Analysis times can be improved by taking

more frequent checkpoints. Redo also scanned the log and read
all the data pages from stable storage. The cost of actually

performing the redo operations was small. One way to speed up

system restart would be to use Most Recently Used (MRU)

buffering (instead of LRU) for the log pages during Analysis, as

Redo scans the log in the same direction as Analysis. Also, restart
performance could be improved by prefetching log pages and the

pages in the DPT. Still, while improvements can be made, the

transaction rollback and system restart performance of the current

implementation seem to be acceptable.

Experi- Exec. Rollback Analysis Redo 1

m-ent time time time time

Wnte_kewLtz I 17.3”/ I 13.24 I 2.06 5.65

I Write-SomeMd I 18.43 I 15.86 I 2,07 6.26 I
Write~ManySm I 32.32 62.86 8.17 15.32

Table 4: Rollback and Recovery Times (seconds)

6. RELATED WORK

In this section we briefly cover related work, including ARIES
extensions and recovery algorithms for shared-disk and client-

server systems (see [Fran92] for a more detailed discussion).

The recent ARIES/RRH (Restricted Repeating of History)

algorithm [MP91] relaxes the repating of history during restwt

Redo. ARIEWRRH requires the notion of conditional undo during

resturt and writes fake CLRS to simplify media recovery. The

differences between ARIES/RRH and ESM-CS conditional undo

result from the fact that ARIE!VRRH was designed to enhance the

performance of ARIES during restar~ while ESM-CS conditional

undo was developed in order to correctly implement transaction

rollback in a page-server system. Thus, while conditional undo is

an option in ARIES, it is a requirement in ESM-CS.

Extensions to ARIES for the shared disk environment are also

related to our algorithm extensions. [MNP90] addresses the prob-

lems of migrating a single-site database system to the shared disk

environment. The problem relevant to our work is the lack of

monotonically increasing LSNS due to the use of a separate log

for each node in the system. The given solution is to store Update

Sequence Numbers (USNS) on pages, rather than LSNS. USNS

are initialized based on a clock vahse at the time the page is for-

matted, requiring that the clocks be synchronized to within an
acceptable limit. We used LRCS to solve a similar problem in

ESM-CS, but due to the lack of synchronized clocks and local

logs, used the estimated end-of-log LSN and appruximatc

recoveryLSNs as described in Section 4. In [MP91] protocols for

transferring a page between nodes without writing the page to disk

are discussed; these protocols are subjcc[to recovery issues sinli-
Iar to those that arise in ESM-CS, as a node can have log records

for a page that is not dirty at that node. The solutions usc a Global

Lock Manager (GLM) whose entries me extended with LSN

information, such as the recoveryLSNs. There are two disadvan-
tages to implementing a similar solution in a page-server system:

it would negate many of the performance benefits of using
cosrse-grained locking (e.g., as in [Josh91]), and it would pre-

clude the use of some non-centralized locking algorithms in the

page-server environment. As was shown in [CFLS91, WR91], the

overhead of centralized locking in the page-server environment
can have a major performance impact.

Several other proposals for recovery in shared-dkk systems
have been published. [Lome90] describes an algorithm that

allows multiple logs to be easily merged during redo. The algo-

rithm does not require synchronized clocks, and thus, may prove

useful in a client-server environment in which clients perform

their own logging. As described in Section 2.2, we chose not to

implement client logging because of the w-me]iability of clients

173

compared to the server and the expense of extra client disks. In

[Rahm91] an algorithm is defined for use with a NO STEAL
‘CFLS9? cwel’M”’Frti’in’M ”’bvti’M”’ ‘hekita’E” “Dataradeo fs m Chent-Server DB S Architectures , Proc.

buffer management policy. The algorithm differs from the ones
z?i!#GMOD Con&, Denver, June 1991.

described previously in that it assigns responsibility for recovery
[Comm90] The Committee for Advanced DBMS Function,
“Third Generation Data Base System Manifesto”, SlGh40D

of certain partitions of the database to prmicular systems. It may Record, Vol. 19, No. 3, Sept. 1990.
require substantial communication to perform Redo for a failed [DFMV90] DeWitt, D., Futtersack, P., Maier, D., Velez, F., “A
node, which can be costly in a client-server system. All of these Study of Three Alternative Workstation-Server Architectures for
algorithms depend on the individual logs of crashed systems being Object-Oriented Database Systems,” Proc. 161/s VLD13 Con!,

available to other nodes, which is not possible with local logs in a Brisbane, Aug. 1990.

client-server system. [Lome90] suggests approaches towards plp:71 Daniels, D., S ector,. A., Thompson, D., “Distributed

addressing this problem.
{g for Transaction rocessmg”, Proc. ACM SIGMOD Conf.,

San*rancisco, May, 1987.

As stated earlier, few details about recovery in page-server and

object-server architectures have been published. This is due in

part to the fact that many of the systems have proprietary imple-

mentations. The 02 system [Deux91] employs an ARIES -bssed
approach that uses shadowing in order to avoid undo. The

ORION-lSX system [KGBW90] uses a FORCE policy and there-

fore keeps only an undo log. We ae unaware of any systems

which have implemented the STEAL/NO FORCE policy for a

page-server (or object-server) system.

7. CONCLUSIONS

In this paper, we have described the problems that arise when

implementing recovery in a page-server environment, and have
presented a recovery method that addresses these problems. The
recovery method was designed with the goal of minimizing the

impact of recovery-related overhead during normal processing,
while still providing reasonable rollback and system restart times.

In particular, the method supports efficient buffer management

policies, allows flexibility in the interaction between clients and

the server, and allows clients to off-load the server by performing

much of the work involved in generating log records. We

described the implementation of the method in ESM-CS, and

presented measurements of the implementation. The measure-

ments obtained so far appear promising. Overhead for many

cases was reasonable and the study raised issues to be addressed

in order to improve the perfo~ance of the system, including:

reducing log record size, batching writes to the log disk, prefetch-

ing from the log during recovery, and exploiting additional paral-
lelism between logging operations on the server and other opera-

tions on the client during normal processing. Additional studies of

realistic workloads will be required in order to better understand

the performance impact of the logging and recovery subsystems.

In addition, we plan to extend the system to include media

recovery, restricted repeating of history, and inter-tmmsaction

caching. Finally, this work has raised a number of interesting

possibilities for alternative recovery system designs, and we plan

to investigate the performance tradeoffs among these alternatives.

Deux91] Deux, O., et al., “The 02 System”, CACM, Vol. 34,
L 0.10, Oct. 1991.

[Exod91] EXODUS Project Grou , “EXODUS Storage Manager
Architectural Overview”, EXOD#S Project Document, Univ. of
Wisconsin - Madison, Nov. 1991.

Fran92] Frarddin, M., Zwilling, M., Tan C. Care , M. DeWitt,
b “Crash Recovery in Client-Server ~XbDU?’, 1% #1081,
C~mp Sci Dept., Univ. of Wisconsin - Madison, Mar. 1992.

[Gray78] Gray, J., “Notes on Data Base Operating S stems”,
~ h. Gra-Operatin Systems - An advanced Course, R. 13a er, R.

fham, G. eegmuller, eds. Springer-Verlag, N. Y., 1 78.

[Gray811 Gray, J., et al., “The Recovery Mana er of the Systcm
R Database Manager”, ACM Comp. Srv., (13),2, !?une, 1981.

[GR92] Gray, J., Reuter, A. Transaction Processing: Conce ts
$and Techniques, Morgan Kau}mann, San Mateo, to appear, 199 .

[HMSC88] Haskin, R., Malachi,, Y.,,, Sawdon, W., Cha?, G.,

;~?{;!y6Kfi?!f:~& ti8~ks11ver ‘ ‘CM ‘runs” ‘n Comp”

[HR83] Haerder, T., Reuter, A., “Principles of Transaction
Oriented Database Recovery - A Taxonomy”, Computing Surveys,
Vol. 15, No.4, Dec., 1983.

[,]osh91] Joshi, A. “Adaptive Locking Srrate ies in a Multi-
Node Data Sharing bnvwonment”, Pro.. 17th tiDB Cmf, Bar-
celona, Sept., 1991.

[KGBW90] Kim, W., Garza, J., Ballou, N., Woclk, D., “Archi-
tecture of the ORION Next-Generation Database S stem”, IEEE
Trarrs, on Knowledge and Da/a Z?ng., Vol. 2, No. 1, f?larch, 1990.

[Lind79] Lindsay, B. ef al, “Notes on Distributed Databases,
IBM Research Report RJ2571, San Jose, July 1979.

[LLOW91] Lamb, C., Landis, G., Orenstein, J. Weinreb, D.,
“The ObjectStore Database System”, CACM, (34),10, Oct. 1991.

Lome90 Lomet, D., “Recover for Shared Disk Systems Using
hi ultlple edo Logs”, TR CRL 9~/4, DEC CRL, Oct. 1990.

[Moha90] Moh~ C., Haderle, D., Lindsay, B., Pirahesh, H.,
Schwarz,, P., “ARIES: A Transaction Method Supporting Fine-
Granulanty Locking and Partial Rollbacks Usin Write-Ahead
Logging”, IBM Research Report RJ6649, IBM AR~, Nov., 1990.

[MN91] Mohan, C., Narang, I., “Recover and Coherency-
Control Protocols for Fast Inters stem Page ;ransfer and Finc-
Granularity Lockin in a Shared lsks Transaction Environment”,

8JProc. 17th VLDB onf., Barcelon~ Sept., 1991.

ACKNOWLEDGEMENTS
MNP90] Mohan, C., Narangl I., Palmer, J., “A Case Study of

F
We thank C. Mohan for a number of informative discussions

roblems in Migrating to Distributed Computing: Page Recovery
Using Multiple Lo s in the Shared Disks Environment”’, IBM

regarding ARIES and our atgorithrn, and for suggesting improve- &Research Report R 343, Almaden Research Ctr., March, 1990.

ments that made our implementation much simpler. Dave Haight MP91] Mohan, C., Pirahesh, H., “ARIES-RRH: Restricted

did much of the initial work of converting the original EXODUS of Histor in the ARIES Recovery Method”, Proc. 7rh
‘e~eatm? ~Int 1Con erence on ata Engineering, Kobe, April 1991.

storage manager to a client-server system. Nancy Hall and Zack

Xu helped build the new version of the system. Praveen Seshadri [Rahm91] Rahm, E. , “Recovery Concepts for Data Sharing Sys-
tems”, Proc. 21st Int’ 1 Symp. on Fault-Tolerant Computing,

provided helpful comments on an earlier draft of this paper. Montreal, June, 1991.

RC89] Richardson, J., Carey, M., “Persistence in the E
REFERENCES l.,anguage Issues and Im lamentation”, Software Prac/ ice and

[BHG87] Bernstein, P., Hadzilacos, V., and Goodman, N., Con- ?Experience, Vol. 19, Dec. 989.

currency Control and Recovery in Database Systems, Addison- “Architecture of Future Dala Flasc
!~~~~~q,~~fi%&~o~l>, No.4., Dec. 1990.Wesley, 1987.

[$~Nl~~9~ Carey, M., DeWittl D., Richardson, J Shekita, E., [WR91] Wang, Y,, Rowe, L,, “Cache Consistency and Con-
anagement for objects in EXODUS::’ in Objet/-

Oriented Concepts, Databases, and A lications, W. Kim and F.
currenc Control in a Client/Server DBMS Architecture”, Proc.

[[
ACM S~GMOD Conf., Denver, June 1991.

Lochovsky, eds., Addison-Wesley, 19

174

